A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesis and Characterization of Ag/AlO Catalysts for the Hydrogenation of 1-Octyne and the Preferential Hydrogenation of 1-Octyne vs 1-Octene. | LitMetric

Catalysts featuring 2, 5, and 10 wt % silver supported on alumina were prepared by the deposition precipitation method and activated under hydrogen. All catalysts were characterized by Brunauer-Emmett-Teller (BET) measurements, inductively coupled plasma-optical emission spectrometry (ICP-OES), backscattered electron scanning electron microscopy (BSE-SEM), high-resolution transmission electron microscopy (HR-TEM), hydrogen-temperature-programmed reduction (H-TPR), H-chemisorption, thermogravimetric analysis (TGA), infrared (IR) spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, and isopropylamine (IPA) TPD and evaluated in a continuous plug flow fixed-bed reactor. Metal nanoparticles with average sizes of 4.5, 11.5, and 21.1 nm were identified by HR-TEM for the 2, 5, and 10 wt % Ag/AlO catalysts, respectively. A conversion of 99% was observed for 1-octyne over particles between 10 and 15 nm in size, with stable operation up to 24 h (decreasing thereafter) at a temperature of 140 °C and a pressure of 30 bar in the competitive hydrogenation reaction. No conversion of 1-octene was noted in competitive reactions (mixed 1-octyne and 1-octene feed) but rather a gain of 1-octene throughout the 72 h time-on-stream. The performance of all catalysts was influenced by both the metal and support, where the latter impacted the overall acidity of the catalysts, thus affecting their long-term stability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8829924PMC
http://dx.doi.org/10.1021/acsomega.1c05231DOI Listing

Publication Analysis

Top Keywords

ag/alo catalysts
8
hydrogenation 1-octyne
8
1-octyne 1-octene
8
electron microscopy
8
catalysts
6
synthesis characterization
4
characterization ag/alo
4
catalysts hydrogenation
4
1-octyne
4
1-octyne preferential
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!