Microvascular and Macrovascular diseases are serious complications of diabetic mellitus, which significantly affect the life quality of diabetic patients. Quantitative description of the relationship between temperature and blood flow is considerably important for non-invasive detection of blood vessel structural and functional lesions. In this study, thermal analysis has been employed to predict blood flow alterations in a foot and a cubic skin model successively by using a discrete vessel-porous media model and further compared the blood flows in 31 diabetic patients. The tissue is regarded as porous media whose liquid phase represents the blood flow in capillaries and solid phase refers to the tissue part. Discrete vascular segments composed of arteries, arterioles, veins, and venules were embedded in the foot model. In the foot thermal analysis, the temperature distributions with different inlet vascular stenosis were simulated. The local temperature area sensitive to the reduction of perfusion was obtained under different inlet blood flow conditions. The discrete vascular-porous media model was further applied in the assessment of the skin blood flow by coupling the measured skin temperatures of diabetic patients and an inverse method. In comparison with the estimated blood flows among the diabetic patients, delayed blood flow regulation was found in some of diabetic patients, implying that there may be some vascular disorders in these patients. The conclusion confirms the one in our previous experiment on diabetic rats. Most of the patients predicted to be with vascular disorders were diagnosed as vascular complication in clinical settings as well, suggesting the potential applications of the vascular-porous media model in health management of diabetic patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8831761 | PMC |
http://dx.doi.org/10.3389/fbioe.2021.786615 | DOI Listing |
Mol Biol Rep
January 2025
State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
Background: Bacillus anthracis (B. anthracis), Yersinia pestis (Y. pestis), and Brucella spp.
View Article and Find Full Text PDFNeuroinformatics
January 2025
Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
Blood flow velocity in the cerebral perforating arteries can be quantified in a two-dimensional plane with phase contrast magnetic imaging (2D PC-MRI). The velocity pulsatility index (PI) can inform on the stiffness of these perforating arteries, which is related to several cerebrovascular diseases. Currently, there is no open-source analysis tool for 2D PC-MRI data from these small vessels, impeding the usage of these measurements.
View Article and Find Full Text PDFActa Neuropathol
January 2025
Department of Clinical Sciences, Lund Brain Injury Laboratory for Neurosurgical Research, Lund University, 222 20, Lund, Sweden.
Traumatic brain injury (TBI) often leads to impaired regulation of cerebral blood flow, which may be caused by pathological changes of the vascular smooth muscle cells (VSMCs) in the arterial wall. Moreover, these cerebrovascular changes may contribute to the development of various neurodegenerative disorders such as Alzheimer's-like pathologies that include amyloid beta aggregation. Despite its importance, the pathophysiological mechanisms responsible for VSMC dysfunction after TBI have rarely been evaluated.
View Article and Find Full Text PDFBackground And Objective: Sickle cell disease (SCD) is a vascular disease that may affect the retina. This study aimed to evaluate differences in average velocity (AV, mm/s), blood flow (BF, μL/min) and vessel diameter (VD, μm) from the temporal retinal arcades in SCD compared to healthy eyes using Doppler optical coherence tomography (DOCT).
Patients And Methods: A cross-sectional study was conducted between 2021 and 2023.
J Exp Biol
January 2025
Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
Peripheral arterial chemoreceptors monitor the levels of arterial blood gases and adjust ventilation and perfusion to meet metabolic demands. These chemoreceptors are present in all vertebrates studied to date but have not been described fully in reptiles other than turtles. The goals of this study were to 1) identify functional chemosensory areas in the South American rattlesnake (Crotalus durissus) 2) determine the neurochemical content of putative chemosensory cells in these areas and 3) determine the role each area plays in ventilatory and cardiovascular control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!