Transgenic Plants That Accumulate Proline Display Enhanced Tolerance to Cadmium Stress.

Front Plant Sci

Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Cientiíficas (ICA-CSIC), Madrid, Spain.

Published: January 2022

Cadmium (Cd) accumulation in agricultural soils constitutes a serious problem for crop yields and food safety. It is known that proline (Pro) can rapidly accumulate in plant tissues in response to abiotic stress. To analyze the potential protective effect of Pro accumulation against Cd toxicity, we compared the response to Cd stress of wild-type (WT) and a transgenic line that we had previously obtained and characterized (p18), which expressed the Δ gene from (), and accumulated high Pro levels. Cadmium significantly reduced germination of WT seeds compared to p18 seeds, and seedling relative root growth, a valid indicator of metal tolerance, was significantly higher for p18 than WT seedlings. We analyzed the relative expression of genes related to Pro metabolism, phytochelatin biosynthesis. antioxidant machinery, and NADPH recycling, which are relevant mechanisms in the response to Cd stress. They presented differential expression in the seedlings of both genotypes both under control conditions and under Cd stress, suggesting that the Cd response mechanisms might be constitutively activated in the transgenic line. Pro accumulation promoted higher survival, enhanced growth performance, and minor nutrient imbalance in transgenic p18 plants compared to WT plants. These facts, together with the recorded gluthatione levels, lipid peroxidation and antioxidant enzyme activities strongly suggested that expression and Pro accumulation conferred enhanced Cd tolerance to p18 plants, which was likely mediated by changes in Pro metabolism, increased phytochelatin biosynthesis and a more efficient antioxidant response. Moreover, p18 roots accumulated significantly higher Cd amounts than WT roots, while Cd translocation to the aerial part was similar to WT plants, thus suggesting that high Pro levels increased not only Cd tolerance, but also Cd phytostabilization by rhizosequestration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8826176PMC
http://dx.doi.org/10.3389/fpls.2022.829069DOI Listing

Publication Analysis

Top Keywords

pro accumulation
12
enhanced tolerance
8
pro
8
response stress
8
high pro
8
pro levels
8
pro metabolism
8
phytochelatin biosynthesis
8
p18 plants
8
p18
6

Similar Publications

Benign prostatic hyperplasia (BPH) is among the most common age-associated diseases in men; however, the contribution of age-related changes in immune cells to BPH is not clear. The current study determined that an age-associated CD8 T cell subset (Taa) with high Granzyme K ( ) and low Granzyme B ( ) gene expression infiltrate aged human prostates and positively correlate with International Prostate Symptom Score (IPSS). A velocity analysis indicated that CD8 T cell differentiation is altered in large BPH prostates compared to small age-matched prostates, favoring Taa accumulation.

View Article and Find Full Text PDF

Hyaluronic acid/silk fibroin nanoparticles loaded with methotrexate for topical treatment of psoriasis.

Int J Pharm X

June 2025

State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing 400715, China.

Systemic administration of methotrexate (MTX), widely regarded as one of the most effective treatments for psoriasis, poses significant challenges due to its high toxicity, limited solubility, and potential for adverse effects. Consequently, developing a topical form of MTX may offer a safer and more effective strategy for psoriasis management. Silk fibroin (SF), a protein-based biomacromolecule, has shown considerable promise as a nanocarrier for sustained and targeted drug delivery, owing to its exceptional physicochemical and biological properties.

View Article and Find Full Text PDF

Microglial activation states and their implications for Alzheimer's Disease.

J Prev Alzheimers Dis

January 2025

School of Health and Biomedical Sciences, RMIT University, 220 3-5 Plenty Road, Bundoora VIC 3082, Australia. Electronic address:

Alzheimer's Disease (AD) is a chronic neurodegenerative disorder characterized by the accumulation of toxic amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs) of tau protein in the brain. Microglia, key immune cells of the central nervous system, play an important role in AD development and progression, primarily through their responses to Aβ and NFTs. Initially, microglia can clear Aβ, but in AD, chronic activation overwhelms protective mechanisms, leading to sustained neuroinflammation that enhances plaque toxicity, setting off a damaging cycle that affects neurons, astrocytes, cerebral vasculature, and other microglia.

View Article and Find Full Text PDF

Peripherally administered TNF inhibitor is not protective against α-synuclein-induced dopaminergic neuronal death in rats.

Neurobiol Dis

January 2025

Department of Biomedicine & Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, 8000 Aarhus, Denmark. Electronic address:

The underlying cause of neuronal loss in Parkinson's disease (PD) remains unknown, but evidence implicates neuroinflammation in PD pathobiology. The pro-inflammatory cytokine soluble tumor necrosis factor (TNF) seems to play an important role and thus has been proposed as a therapeutic target for modulation of the neuroinflammatory processes in PD. In this regard, dominant-negative TNF (DN-TNF) agents are promising antagonists that selectively inhibit soluble TNF signaling, while preserving the beneficial effects of transmembrane TNF.

View Article and Find Full Text PDF

Gut microbiota in Alzheimer's disease: understanding molecular pathways and potential therapeutic perspectives.

Ageing Res Rev

January 2025

i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012 Valladolid, Spain; Physical Activity and Health Research Group (PaHerg), Research Institute of the Hospital 12 de Octubre ('imas12'), 28041 Madrid, Spain. Electronic address:

Accumulating evidence suggests that gut microbiota (GM) plays a crucial role in Alzheimer's disease (AD) pathogenesis and progression. This narrative review explores the complex interplay between GM, the immune system, and the central nervous system in AD. We discuss mechanisms through which GM dysbiosis can compromise intestinal barrier integrity, enabling pro-inflammatory molecules and metabolites to enter systemic circulation and the brain, potentially contributing to AD hallmarks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!