IL-4 and IL-13 cytokines have been associated with a non-healing phenotype in murine leishmaniasis in -infected BALB/c mice as demonstrated in IL-4, IL-13 and IL-4Rα global knockout mouse studies. However, it is unclear from the studies which cell-type-specific IL-4/IL-13 signaling mediates protection to . Previous studies have ruled out a role for IL-4-mediated protection on CD4 T cells during infections. A candidate for this role may be non-lymphocyte cells, particularly DCs, as was previously shown in infections, where IL-4 production drives dendritic cell-IL-12 production thereby mediating a type 1 immune response. However, it is unclear if this IL-4-instruction of type 1 immunity also occurs in CL caused by , since the outcome of cutaneous leishmaniasis often depends on the infecting species. Thus, BALB/c mice with cell-specific deletion of the IL-4Rα on CD11c DCs (CD11cIL-4Rα) were infected with promastigotes in the footpad and the clinical phenotype, humoral and cellular immune responses were investigated, compared to the littermate control. Our results show that CL disease progression in BALB/c mice is independent of IL-4Rα signaling on DCs as CD11cIL-4Rα mice had similar footpad lesion progression, parasite loads, humoral responses (IgE, IgG1, IgG 2a/b), and IFN-γ cytokine secretion in comparison to littermate controls. Despite this comparable phenotype, surprisingly, IL-4 production in CD11cIL-4Rα mice was significantly increased with an increasing trend of IL-13 when compared to littermate controls. Moreover, the absence of IL-4Rα signaling did not significantly alter the frequency of CD4 and CD8 lymphocytes nor their activation, or memory phenotype compared to littermate controls. However, these populations were significantly increased in CD11cIL-4Rα mice due to greater total cell infiltration into the lymph node. A similar trend was observed for B cells whereas the recruitment of myeloid populations (macrophages, DCs, neutrophils, and Mo-DCs) into LN was comparable to littermate IL-4Rα mice. Interestingly, IL-4Rα-deficient bone marrow-derived dendritic cells (BMDCs), stimulated with LPS or promastigotes in presence of IL-4, showed similar levels of IL-12p70 and IL-10 to littermate controls highlighting that IL-4-mediated DC instruction was not impaired in response to . Similarly, IL-4 stimulation did not affect the maturation or activation of IL-4Rα-deficient BMDCs during infection nor their effector functions in production of nitrite and arginine-derived metabolite (urea). Together, this study suggests that IL-4 Rα signaling on DCs is not key in the regulation of immune-mediated protection in mice against infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8831752 | PMC |
http://dx.doi.org/10.3389/fimmu.2021.759021 | DOI Listing |
Osteoarthritis Cartilage
December 2024
Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University. Xi'an, China; Department of Oral anatomy and Physiology and TMD, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China. Electronic address:
Objective: Some cells in temporomandibular joint (TMJ) cartilage undergo proliferation in response to negative pressure, which can be induced in vivo by creating bilateral anterior elevation (BAE). TMJ cartilage harbours CD90-expressing cells, and CD90 expression increases under certain controlled conditions. The parathyroid hormone-related peptide (PTHrP) nuclear localization segment (NLS) promotes chondrocyte proliferation, and mammalian target of rapamycin (mTOR) signalling plays a regulatory role in promoting PTHrP transcription.
View Article and Find Full Text PDFAutophagy Rep
November 2023
Department of Ophthalmology & Pathology, Duke University, Durham, NC, 27705, USA.
Glaucoma encompasses a spectrum of disorders characterized by the chronic degeneration of retinal ganglion cell (RGC) axons and the progressive loss of RGCs, resulting in visual impairment. In this study, we investigated the effect of autophagy deficiency on two glaucoma hypertensive models, the DBA/2J spontaneous glaucoma model, and the TGFβ2 (transforming growth factor β2) chronic ocular hypertensive model. For this, we used the and DBA/2J- mice, this latter generated in our laboratory via CRISPR/Cas9 technology, which display impaired autophagy.
View Article and Find Full Text PDFBMC Res Notes
December 2024
School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
Objective: The Polycomb Repressive Complex 2 (PRC2) regulates neural stem cell behaviour during development of the cerebral cortex, yet how the loss of PRC2 developmentally influences cell identity in the mature brain is poorly defined. Using a mouse model in which the PRC2 gene Embryonic ectoderm development (Eed) was conditionally deleted from the developing mouse dorsal telencephalon, we performed single nuclei RNA sequencing (snRNA-seq) on the cortical plate of an adult heterozygote Eed knockout mouse and an adult homozygote Eed knockout mouse compared to a littermate control. This work was part of a larger effort to understand consequences of mutations to PRC2 within the mature brain.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
December 2024
Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA , USAXXXX, XXX.
Why fibroblast growth factor 23 (FGF23) levels increase markedly in chronic kidney disease (CKD) is unknown. Recently, we found that phosphate stimulates renal production of glycerol-3-phosphate (G-3-P), which circulates to bone to trigger FGF23 production. To assess the impact of G-3-P on FGF23 production in CKD, we compared the effect of adenine-induced CKD in mice deficient in glycerol-3-phosphate dehydrogenase 1 (Gpd1), an enzyme that synthesizes G-3-P, along with wild-type littermates.
View Article and Find Full Text PDFBiol Open
December 2024
Research Center for Integrative Evolutionary Science, SOKENDAI 240-0193 Shonan Village, Hayama, Kanagawa, Japan.
We are naturally chimeras. Apart from our own cells originating from the fertilized egg, placental mammals receive small numbers of maternal cells called maternal microchimerism (MMc) that persist throughout one's whole life. Not only are varying frequencies of MMc cells reported in seemingly contradicting phenomena, including immune tolerance and possible contribution to autoimmune-like disease, but frequencies are observable even among healthy littermates showing varying MMc frequencies and cell type repertoire.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!