AI Article Synopsis

Article Abstract

In this study, the extent to which different emotions of pregnant women can be predicted based on heart rate-relevant information as indicators of autonomic nervous system functioning was explored using various machine learning algorithms. Nine heart rate-relevant autonomic system indicators, including the coefficient of variation R-R interval (CVRR), standard deviation of all NN intervals (SDNN), and square root of the mean squared differences of successive NN intervals (RMSSD), were measured using a heart rate monitor (MyBeat) and four different emotions including "happy," as a positive emotion and "anxiety," "sad," "frustrated," as negative emotions were self-recorded on a smartphone application, during 1 week starting from 23rd to 32nd weeks of pregnancy from 85 pregnant women. The k-nearest neighbor (k-NN), support vector machine (SVM), logistic regression (LR), random forest (RF), naïve bayes (NB), decision tree (DT), gradient boosting trees (GBT), stochastic gradient descent (SGD), extreme gradient boosting (XGBoost), and artificial neural network (ANN) machine learning methods were applied to predict the four different emotions based on the heart rate-relevant information. To predict four different emotions, RF also showed a modest area under the receiver operating characteristic curve (AUC-ROC) of 0.70. CVRR, RMSSD, SDNN, high frequency (HF), and low frequency (LF) mostly contributed to the predictions. GBT displayed the second highest AUC (0.69). Comprehensive analyses revealed the benefits of the prediction accuracy of the RF and GBT methods and were beneficial to establish models to predict emotions based on autonomic nervous system indicators. The results implicated SDNN, RMSSD, CVRR, LF, and HF as important parameters for the predictions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8830335PMC
http://dx.doi.org/10.3389/fpsyt.2021.799029DOI Listing

Publication Analysis

Top Keywords

machine learning
12
pregnant women
12
heart rate-relevant
12
predict emotions
12
heart rate
8
emotions pregnant
8
based heart
8
autonomic nervous
8
nervous system
8
system indicators
8

Similar Publications

A prediction model for electrical strength of gaseous medium based on molecular reactivity descriptors and machine learning method.

J Mol Model

January 2025

Hubei Key Laboratory·for High-Efficiency-Utilization of Solar Energy and Operation, Control of Energy-Storage System, Hubei-University of Technology, Wuhan, 430068, China.

Context: Ionization and adsorption in gas discharge are similar to electrophilic and nucleophilic reactions. The molecular descriptors characterizing reactions such as electrostatic potential descriptors are useful in predicting the electrical strength of environmentally friendly gases. In this study, descriptors of 73 molecules are employed for correlation analysis with electrical strength.

View Article and Find Full Text PDF

Predicting fall parameters from infant skull fractures using machine learning.

Biomech Model Mechanobiol

January 2025

Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.

When infants are admitted to the hospital with skull fractures, providers must distinguish between cases of accidental and abusive head trauma. Limited information about the incident is available in such cases, and witness statements are not always reliable. In this study, we introduce a novel, data-driven approach to predict fall parameters that lead to skull fractures in infants in order to aid in determinations of abusive head trauma.

View Article and Find Full Text PDF

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.

View Article and Find Full Text PDF

Risk-taking is a concerning yet prevalent issue during adolescence and can be life-threatening. Examining its etiological sources and evolving pathways helps inform strategies to mitigate adolescents' risk-taking behavior. Studies have found that unfavorable environmental factors, such as adverse childhood experiences (ACEs), are associated with momentary levels of risk-taking in adolescents, but little is known about whether ACEs shape the developmental trajectory of risk-taking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!