Agomelatine, an agonist of melatonergic MT1 and MT2 receptors and a selective 5-hydroxytryptamine 2C receptor antagonist, is widely applied in treating depression and insomnia symptoms in several neurogenerative diseases. However, the neuroprotective effect of agomelatine in Alzheimer's disease (AD) is less known. In this study, a total of 30 mice were randomly divided into three groups, namely, wild type (WT), APP/PS1, and agomelatine (50 mg/kg). After 30 days, the Morris water maze was performed to test the cognitive ability of mice. Then, all mice were sacrificed, and the hippocampus tissues were collected for ELISA, Western blot, and immunofluorescence analysis. In this study, we found that agomelatine attenuated spatial memory deficit, amyloid-β (Aβ) deposition, tau phosphorylation, and neuroinflammation in the hippocampus of APP/PS1 mice. Further study demonstrated that agomelatine treatment upregulated the protein expression of DHCR24 and downregulated P-Akt, P-mTOR, p-p70s6k, Hes1, and Notch1 expression. In summary, our results identified that agomelatine could improve cognitive impairment and ameliorate AD-like pathology in APP/PS1 mice activating DHCR24 signaling and inhibiting Akt/mTOR and Hes1/Notch1 signaling pathway. Agomelatine may become a promising drug candidate in the therapy of AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8828541 | PMC |
http://dx.doi.org/10.3389/fnagi.2021.766410 | DOI Listing |
Alzheimers Res Ther
January 2025
MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France.
Background: Fluoroethylnormemantine (FENM), a new Memantine (MEM) derivative, prevented amyloid-β[25-35] peptide (Aβ)-induced neurotoxicity in mice, a pharmacological model of Alzheimer's disease (AD) with high predictive value for drug discovery. Here, as drug infusion is likely to better reflect drug bioavailability due to the interspecies pharmacokinetics variation, we analyzed the efficacy of FENM after chronic subcutaneous (SC) infusion, in comparison with IP injections in two AD mouse models, Aβ-injected mice and the transgenic APP/PSEN1 (APP/PS1) line.
Methods: In Aβ-treated mice, FENM was infused at 0.
3 Biotech
January 2025
Department of Traditional Chinese Medicine, Binzhou Medical University Hospital, Binzhou, 256603 Shandong China.
The etiology and pathogenesis of Alzheimer's disease (AD) are complex, and currently, no comprehensive treatment measures exist. In this study, we initially utilized ultra-high-performance liquid chromatography with quadrupole orbitrap mass spectrometry (UHPLC-QE-MS) to profile the bioactive constituents of SZLOL present in the bloodstream. Subsequent Y-maze experimental data demonstrated that SZLOL could ameliorate short-term memory deficits in APP/PS1 mice.
View Article and Find Full Text PDFZool Res
January 2025
Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea. E-mail:
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive impairment and distinct neuropathological features, including amyloid-β plaques, neurofibrillary tangles, and reactive astrogliosis. Developing effective diagnostic, preventative, and therapeutic strategies for AD necessitates the establishment of animal models that accurately recapitulate the pathophysiological processes of the disease. Existing transgenic mouse models have significantly contributed to understanding AD pathology but often fail to replicate the complexity of human AD.
View Article and Find Full Text PDFNeurosci Bull
January 2025
Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
Alzheimer's disease (AD), a neurodegenerative disorder with complex etiologies, manifests through a cascade of pathological changes before clinical symptoms become apparent. Among these early changes, alterations in the expression of non-coding RNAs (ncRNAs) have emerged as pivotal events. In this study, we focused on the aberrant expression of ncRNAs and revealed that Lamr1-ps1, a pseudogene of the laminin receptor, significantly exacerbates early spatial learning and memory deficits in APP/PS1 mice.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
Plant-based foods with low methionine contents have gained increasing interest for their potential health benefits, including neuroprotective effects. Methionine restriction (MR) linked to a plant-based diet has been shown to mitigate neurodegenerative diseases such as Alzheimer's disease (AD) through mechanisms that involve the gut microbiota. In this study, a 16-week MR diet (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!