We investigate the use of spatial interpolation methods for reconstructing the horizontal near-surface wind field given a sparse set of measurements. In particular, random Fourier features is compared with a set of benchmark methods including kriging and inverse distance weighting. Random Fourier features is a linear model approximating the velocity field, with randomly sampled frequencies and amplitudes trained to minimize a loss function. We include a physically motivated divergence penalty , as well as a penalty on the Sobolev norm of . We derive a bound on the generalization error and a sampling density that minimizes the bound. We then devise an adaptive Metropolis-Hastings algorithm for sampling the frequencies of the optimal distribution. In our experiments, our random Fourier features model outperforms the benchmark models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8596000PMC
http://dx.doi.org/10.1098/rspa.2021.0236DOI Listing

Publication Analysis

Top Keywords

random fourier
16
fourier features
16
wind field
8
field reconstruction
4
reconstruction adaptive
4
random
4
adaptive random
4
fourier
4
features
4
features investigate
4

Similar Publications

A new green hydrogel consisting of cherry stone (CS) powder and sodium alginate (SA) was synthesized through physical crosslinking. The product had a mean diameter of 3.95 mm, a moisture content of 92.

View Article and Find Full Text PDF

In this study, a binary composite adsorbent based on activated carbon and phosphoric acid geopolymer foam (ACP) was prepared by combining phosphoric acid geopolymer (PAGP) with activated carbon (AC) and applied for the removal of methylene blue (MB). Activated carbon was thoroughly mixed with a mixture of fly ash and metakaolin in varying ratios, followed by phosphoric acid activation and thermal curing. The ACP adsorbent was characterized using scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectrophotometer, X-ray diffractometer (XRD), surface area analyser (SAP), and thermogravimetric analyser (TGA).

View Article and Find Full Text PDF

This study evaluated the effects of chemical modification, including ethanol, acetic acid, and natural deep eutectic solvents (NADES), on the secondary and tertiary structures, hydrophobicity, free amine content, protein-protein interactions, and functional properties of zein. The NADES used included choline chloride: oxalic acid, choline chloride: urea, choline chloride: glycerol, and glucose: citric acid. The results reveal that the NADES system significantly altered zein's structures, as evidenced by Fourier transform infrared spectroscopy, fluorescence, and Ultraviolet-Visible Spectroscopy analysis.

View Article and Find Full Text PDF

This research aimed to evaluate the effect of triple-frequency ultrasound treatment (TFUT), germination (GE), and traditional soaking (TS) methods on the nutritional and techno-functional properties of two different barley varieties, including ZQ2000 and XMLY22. Both ZQ2000 and XMLY22 varieties exhibited the highest total phenolic content (TPC) with 840.73 ± 23.

View Article and Find Full Text PDF

Plastic waste management is one of the key issues in global environmental protection. Integrating spectroscopy acquisition devices with deep learning algorithms has emerged as an effective method for rapid plastic classification. However, the challenges in collecting plastic samples and spectroscopy data have resulted in a limited number of data samples and an incomplete comparison of relevant classification algorithms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!