Background: The drastic decline of Ukraine's immunization coverage since 2009 led to concerns about potential resurgence diphtheria and tetanus, along with other vaccine-preventable diseases.
Methods: To assess population immunity against diphtheria and tetanus, we tested specimens from the serosurvey conducted in 2017 among children born in 2006-2015, the birth cohorts targeted by the nationwide outbreak response immunization following a circulating vaccine-derived poliovirus type 1 outbreak in Zakarpattya province in 2015. We surveyed four regions of Ukraine, using cluster sampling in Zakarpattya, Sumy, and Odessa provinces and simple random sampling in Kyiv City. We tested serum specimens for IgG antibodies against diphtheria and tetanus, using microbead assays (MBA). We estimated seroprevalence and calculated 95% confidence intervals. We also obtained information on the immunization status of surveyed children.
Results: Seroprevalence of ≥0.1 IU/mL diphtheria antibodies was <80% in all survey sites (50.0%-79.2%). Seroprevalence of ≥0.1 IU/mL tetanus antibodies was ≥80% in Sumy, Kyiv City, and Odessa (80.2%-89.1%) and 61.6% in Zakarpattya. Across the sites, the proportion of children vaccinated age-appropriately with diphtheria-tetanus-containing vaccines (DTCV) was 28.5%-57.4% among children born in 2006-2010 and 34.1%-54.3% among children born in 2011-2015. The proportion of recipients of <3 DTCV doses increased from 7.1%-16.7% among children born in 2006-2010 to 19.8%-38.6% among children born in 2011-2015, as did the proportion of recipients of zero DTCV doses (2.6%-8.8% versus 8.0%-14.0%, respectively).
Conclusions: Protection against diphtheria among children born in 2006-2015 was suboptimal (<80%), particularly in Zakarpattya. Protection against tetanus was adequate (≥80%) except in Zakarpattya. Diphtheria-tetanus immunization status was suboptimal across all sites. Catch-up vaccination of unvaccinated/under-vaccinated children and other efforts to increase immunization coverage would close these immunity gaps and prevent the resurgence of diphtheria and tetanus in Ukraine, particularly in Zakarpattya.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10351878 | PMC |
http://dx.doi.org/10.1016/j.vaccine.2022.02.006 | DOI Listing |
J Infect
January 2025
Bandim Health Project, Research Unit OPEN, Department of Clinical Research, University of Southern Denmark, Odense C, Denmark; Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark.
Objectives: To investigate if receipt of measles-mumps-rubella (MMR) vaccine following the third dose of diphtheria-tetanus-acellular pertussis (DTaP3) is associated with reduced rates of non-targeted infectious disease hospitalisations.
Methods: Register based cohort study following 1,397,027 children born in Denmark, Finland, Norway, and Sweden until 2 years of age. Rates of infectious disease hospitalisations with minimum one overnight stay according to time-varying vaccination status were compared using Cox proportional hazards regression analysis with age as the underlying timescale and including multiple covariates.
Background: The full pentavalent (DPT-HepB-Hib) vaccination is the main strategy to prevent five communicable diseases in early childhood, especially in countries with huge communicable disease burdens like Ethiopia. Exploring spatial distributions and determinants of full pentavalent vaccination status in minor ecological areas in Ethiopia is crucial for creating targeted immunization campaigns and monitoring the advancement of accomplishing sustainable development goals. This study aimed to investigate the spatial disparities and determinants of full pentavalent vaccination among 12-23-month-old children in Ethiopia.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Unit of Hygiene and Medical Statistics, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy.
Background: General practitioners (GPs) and primary care units collaborate with Prevention Departments (PDs) to improve immunization by participating in vaccination campaigns, sharing tools, and implementing educational programs to raise patient awareness. This review aimed to identify effective strategies for involving GPs in PD vaccination practices.
Methods: A systematic review following PRISMA guidelines was conducted on MEDLINE, TripDatabase, ClinicalTrials, CINAHL, and Cochrane up to January 2024 to identify full-text studies in English evaluating the effectiveness of GP involvement.
Vaccines (Basel)
November 2024
Department of Data and Analytics, World Health Organization, 20 Avenue Appia, 1211 Geneva, Switzerland.
Monitoring immunization inequalities is crucial for achieving equity in vaccine coverage. Summary measures of health inequality provide a single numerical expression of immunization inequality. However, the impact of different summary measures on conclusions about immunization inequalities has not been thoroughly studied.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea.
: The development of a five-in-one vaccine microneedle patch (five-in-one MN patch) aims to address challenges in administering vaccines against Diphtheria (DT), Tetanus (TT), Pertussis (wP), Hepatitis B (HBsAg), and type b (Hib). Combining multiple vaccines into a single patch offers a novel solution to improve vaccine accessibility, stability, and delivery efficiency, particularly in resource-limited settings. : The five-in-one MN patch consists of four distinct microneedle arrays: DT and TT vaccines are coated together on one array, while wP, HepB, and Hib vaccines are coated separately on individual arrays.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!