Statement Of Problem: A novel zirconia-alumina composite (ZAC) particle has yet to be studied for airborne-particle abrasion in a bonding protocol for the zirconia surface.
Purpose: The purpose of this in vitro study was to evaluate the shear bond force of resin cement to yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) when using spherical ZAC particles to conduct airborne-particle abrasion and modify the topography of Y-TZP.
Material And Methods: Spherical 30- to 70-μm ZAC particles were fabricated by using a hybrid gel technique. A total of 160 Ø6.6×4.0-mm zirconia disks were fabricated from 4 commercially available zirconia blanks, e.max ZirCAD zirconia (EM), NexxZr T zirconia (NE), Lava Plus High Translucency zirconia (LP), and Imagine High Translucency Zirconia (IM), by using computer-aided manufacturing technology. As-sintered specimens without further surface treatment were used as controls (ZR0). Surface treatment groups included sharp-edged alumina airborne-particle abrasion (ABC), 50 μm, 0.2 MPa; airborne-particle abrasion with ZAC particle at 0.2 MPa (2ZA); and airborne-particle abrasion with spherical ZAC particle at 0.4 MPa (4ZA). All surface treatment groups were airborne-particle abraded at the specified pressures for 10 seconds at a standardized distance of 10 mm. The surface roughness (Ra) and area roughness (Sa) of specimens from each group were measured. Following the application of an adhesive (Scotchbond Universal), Ø6.6×4.0-mm resin cement (RelyX Ultimate) buttons were fabricated for shear bond testing by using a universal testing machine at a 5-mm/min crosshead speed (n=10). The data were analyzed by using a 2-way ANOVA, Tukey HSD test, and regression analysis (α=0.05). Scanning electron microscopy (SEM) was performed to observe changes of the zirconia surface and the failure modes of each group before and after shear bond testing.
Results: The mean ±standard deviation shear bond force values ranged from 272.6 ±41.4 N to 686.7 ±152.8 N. Statistically significant higher force values than those of the controls (P<.05) were obtained by using airborne-particle abrasion. No significant differences were found among any of the airborne-particle abrasion treatment groups (P>.05). The mean of Ra values ranged from 0.27 μm to 0.74 μm, and the mean of Sa values, from 0.48 μm to 1.48 μm. SEM observation revealed that the zirconia surface was made jagged by abrasion with sharp-edged alumina particles. The spherical ZAC particles create microcraters on the zirconia surface. Fractographic observation disclosed that failures were adhesive-cohesive failure modes with residual resin cement attached on the zirconia surface.
Conclusions: The surface treatment of zirconia with sharp-edged alumina or the spherical ZAC abrasives improved the bonding force between the zirconia and resin cement. No statistically significant differences in shear bond force values were found between airborne-particle abrasion surface treatment groups.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.prosdent.2021.12.022 | DOI Listing |
J Prosthodont
January 2025
School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
Purpose: Ultra-high translucency zirconia (UT-Zr) is known for its high esthetic quality; however, its inert surface results in low hydrophilicity and surface energy (SE). To address this limitation, this study proposes an innovative zirconia heat treatment process (ZHTP) and aims to evaluate the effects of ZHTP on the surface characteristics of UT-Zr, offering a novel and practical approach for surface pretreatment in dental practice.
Material And Methods: The plate-shaped UT-Zr samples were fabricated.
Clin Oral Investig
January 2025
Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland.
Objectives: To compare the impact of intaglio surface treatments - airborne particle abrasion and hydrofluoric acid (HF) etching - of feldspar ceramic (FEL) crowns on the fracture load (FL) and to investigate the effects of abutment materials and artificial aging. The aim was to assess whether etching could be replaced by an alternative surface roughening method.
Materials And Methods: FEL crowns had their intaglio surfaces either abraded (25 µm AlO, 0.
J Funct Biomater
November 2024
King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia.
The aim of the study is to assess the impact of mechanical surface treatments on the shear bond strength (SBS) of orthodontic brackets bonded to three-dimensional (3D) printed and milled CAD/CAM provisional materials. Sixty cylindrical samples were fabricated for each provisional material. Samples were treated with one of the following surface treatments: aluminum oxide airborne particle abrasion, diamond bur rotary instrument roughening, and phosphoric acid etching (control).
View Article and Find Full Text PDFJ Prosthet Dent
December 2024
Assistant Professor, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics,School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China. Electronic address:
Statement Of Problem: Polyetheretherketone (PEEK) has been used in clinical dentistry because of its excellent physical and biological properties. However, achieving an effective and durable bond with enamel is challenging because of its chemical inertness and low surface energy, and data on the effects of different surface treatments on the durability of PEEK-enamel bonds are scarce.
Purpose: The purpose of this in vitro study was to investigate airborne-particle abrasion, sulfuric acid etching, and the combined use of these treatments on the bonding durability of PEEK-enamel bonds and to gain a deeper understanding of their bonding mechanism.
BMC Oral Health
December 2024
Dental Sciences Research Center, Department of Prosthodontics, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!