Introduction: The application of doxorubicin (DOX) in cancer therapy has been limited due to its drug resistance and poor internalization. Graphene oxide (GO) nanostructures have the capacity for DOX delivery while promoting its cytotoxicity in cancer.

Areas Covered: The favorable characteristics of GO nanocomposites, preparation method, and application in cancer therapy are described. Then, DOX resistance in cancer, GO-mediated photothermal therapy, and DOX delivery for cancer suppression are described. Preparation of stimuli-responsive GO nanocomposites, surface functionalization, hybrid nanoparticles, and theranostic applications are emphasized in DOX chemotherapy.

Expert Opinion: GO nanoparticle-based photothermal therapy maximizes the anti-cancer activity of DOX against cancer cells. Besides DOX delivery, GO nanomaterials are capable of loading anti-cancer agents and genetic tools to minimize drug resistance and enhance the cytolytic impact of DOX in cancer eradication. To enhance DOX accumulation, stimuli-responsive (redox-, light-, enzyme- and pH-sensitive) GO nanoparticles have been developed for DOX delivery. Development of targeted delivery of DOX-loaded GO nanomaterials against cancer cells may be achieved by surface modification of polymers such as polyethylene glycol, hyaluronic acid, and chitosan. DOX-loaded GO nanoparticles have demonstrated theranostic potential. Hybridization of GO with other nanocarriers such as silica and gold nanoparticles further broadens their potential anti-cancer therapy applications.

Download full-text PDF

Source
http://dx.doi.org/10.1080/17425247.2022.2041598DOI Listing

Publication Analysis

Top Keywords

dox delivery
16
dox cancer
12
dox
10
graphene oxide
8
cancer
8
cancer therapy
8
drug resistance
8
photothermal therapy
8
cancer cells
8
therapy
5

Similar Publications

Polymer based nanoformulations offer substantial prospects for efficacious chemotherapy delivery. Here, we developed a pH-responsive polymeric nanoparticle based on acidosis-triggered breakdown of boronic ester linkers. A biocompatible hyaluronic acid (HA) matrix served as a substrate for carrying a doxorubicin (DOX) prodrug which also possesses natural affinity for CD44 cells.

View Article and Find Full Text PDF

Tumor heterogeneity, immune-suppressive microenvironment and the precise killing of tumor cells by drugs are important factors affecting tumor treatment. In this study, we developed environment-responsive drug delivery system (FM@IQ/PST&ZIF-8/DOX) based on ZIF-8 for tumor photothermal/immunotherapy/chemotherapy synergistic therapy. The prepared FM@IQ/PST&ZIF-8/DOX nanoplatfrom not only has highly drug loading capacity for chemotherapeutic drug-doxorubicin, but also erythrocyte membrance modified on their surface can endow their immunity-escaping property and prolong their blood circulation time.

View Article and Find Full Text PDF

Surgery is considered the gold standard for treating melanoma, but the high recurrence rate after surgery still remains as a major challenge. Therefore, using doxorubicin (DOX) as a model drug, this study investigated the 3D printing of anticancer drug-loaded hydrogel blend scaffolds for inhibiting post-operation melanoma recurrence and for promoting tissue regeneration. Three-dimensional printing could successfully produce methacrylate-modified chitosan (CSMA) and methylcellulose (MC) hydrogel blend scaffolds.

View Article and Find Full Text PDF

The development of anticancer diagnostic and therapeutic strategies is of crucial importance to improve efficacy and therapeutic specificity. Here, we describe the synthesis and characterization of fluorescent self-assembling nanomicelles (NMs) based on a biocompatible polysaccharide (cellulose, CE) functionalized with a tetraphenyl ethylene derivative (TPEHy) and loaded with Doxorubicin (DOX) with aggregation-induced emission (AIE) properties and pH-dependent drug release. We obtained CE-TPEHy-NMs with an average diameter of 60 ± 17 nm for unloaded NMs and 86 ± 25 nm for NMs loaded with DOX, respectively.

View Article and Find Full Text PDF

This study aims to design microgels that are thermo- and pH-sensitive for controlled doxorubicin (Dox) release in response to tumor microenvironment changes. N-isopropylacrylamide (NIPAAm) is widely used for thermoresponsive tumor-targeted drug delivery systems for the release of therapeutic payloads in response to temperature changes. Herein, a NIPAAm microgel (MP) that is responsive to temperature and pH was designed for the smart delivery of Dox.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!