To understand the pathogenesis of dilated cardiomyopathy (DCMP), it is necessary to establish the molecular-cellular mechanisms of myocardial aging, including those associated with programmed cell death, the molecular mechanisms of which have not been practically studied. The aim of this work is to study markers of apoptosis in cardiomyocytes of patients with DCMP in vitro. We used the method of primary dissociated cell cultures and the method of immunofluorescence confocal laser microscopy. Cells of the 3rd and 14th passages, corresponding to «young» and «old» cultures, were used to simulate cellular senescence. Results. At the molecular level, aging of cardiomyocyte cells was accompanied by a twofold increase in the expression of p16INK4a compared to «young cultures» both in the control group and in the group with DCMP. It was also found that the expression of p16INK4a in cultures taken from patients with pathology was 2 times higher than in similar cultures from healthy patients. The expression of p21 was increased in the group with DCMP compared to the control; however, with aging of the culture, the expression of p21 did not change, remaining at a significant level. The most significant differences were obtained when comparing the expression of Bax in the cell culture of cardiomyocytes from the group with DCMP in a «young» culture compared with the norm, 3,2 times. Aging of myocardial cells at the molecular level was manifested in an increase in the expression of the Bax protein, which is the triggering mechanism of the mitochondrial apoptosis pathway. It is possible that this pathway of cell death is prevalent in DCMP.

Download full-text PDF

Source

Publication Analysis

Top Keywords

group dcmp
12
cardiomyocytes patients
8
cell death
8
molecular level
8
increase expression
8
expression p16ink4a
8
expression p21
8
expression bax
8
expression
7
dcmp
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!