Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Accurate coordination of mediolateral foot placement, relative to the center of mass kinematic state, is one of the mechanisms which ensures mediolateral stability during human walking. Previously, we found that shoes constraining ankle moments decreased the degree of foot placement control with respect to the center of mass kinematic state. As such, ankle moment constraints can be seen as a perturbation of foot placement. Direct mechanical perturbations of the swing leg trajectory can improve the degree of foot placement control as an after-effect. Here, we asked whether constrained ankle moments could have a similar effect. If confirmed, this would offer a simple training tool for individuals with impaired foot placement control. Participants walked in three conditions; normal (baseline) while wearing shoes constraining ankle moments (training) and normal again (after-effects). The degree of foot placement control was calculated as the percentage of variance in foot placement that could be predicted based on the center of mass kinematic state in the preceding swing phase. During training, the degree of foot placement control decreased initially compared to baseline, but it gradually improved over time. In the after-effect condition, it was higher than during baseline, yet not significantly so. During training, we observed increased step width, decreased stride time and reduced local dynamic stability. In conclusion, constraining ankle moment control deteriorates the degree of foot placement control. A non-significant trend towards an improved degree of foot placement control after prolonged exposure to constrained ankle moments, allows for speculation on a training potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiomech.2022.110990 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!