At present, the focused ion beam method is an effective technique for nanoscale profiling of a solid surface and prototyping of micro- and nanoscale structures. The article reveals the results of experimental studies on improving the accuracy and resolution of nanoscale profiling of the surface of solids with a focused ion beam. Investigations of the regularities of the influence of the focused ion beam current, beam dwell time and overlap on the parameters of nanoscale structures and the surface profile have been carried out. The influence of the FIB parameters on the deviation of the structure profile from the specified by the template was estimated. Experimental studies have been carried out to determine the influence of the direction of scanning of the ion beam by the template on the magnitude of the error that occurs when the structure of the graphic template is transferred to the substrate. The optimal relationships between the FIB current and the dimensions of the structures being formed have been determined, thus making it possible to ensure the highest accuracy and rate of formation of nanoscale structures. The results can be used to optimize the choice of the ion-beam milling parameters to achieve the maximum accuracy of reproduction of the given sizes of structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultramic.2022.113481 | DOI Listing |
Heliyon
January 2025
Division of Polymer Chemistry, Department of Chemistry, Atomic Energy Commission, P.O. Box: 6091, Damascus, Syrian Arab Republic.
The degree of sulfonation (DS) is a key property of sulfonated polymers, as it significantly influences their swelling behaviour, conductivity and mechanical properties. Accurately determining the DS is essential for optimizing these materials for various applications. In this work, the DS of sulfonated poly (ether ether ketone) (SPEEK) was evaluated using a combination of analytical techniques, including titration, back titration, Fourier Transform Infrared (FTIR), Ultra-Violet (UV) and proton nuclear magnetic resonance (H NMR) spectroscopies, Thermogravimetric analysis (TGA), Rutherford backscattering (RBS) and particle induced X-ray emission (PIXE) analysis.
View Article and Find Full Text PDFRadiat Oncol
January 2025
ISTCT UMR 6030-CNRS, Université de Caen-Normandie, Caen, France.
Background: Radiotherapy as a complement or an alternative to neurosurgery has a central role in the treatment of skull base grade I-II meningiomas. Radiotherapy techniques have improved considerably over the last two decades, becoming more effective and sparing more and more the healthy tissue surrounding the tumour. Currently, hypo-fractionated stereotactic radiotherapy (SRT) for small tumours and normo-fractionated intensity-modulated radiotherapy (IMRT) or proton-therapy (PT) for larger tumours are the most widely used techniques.
View Article and Find Full Text PDFSci Rep
January 2025
Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Orgánica, IMEYMAT, Universidad de Cádiz, Campus Río San Pedro, 11510, Puerto Real, Cádiz, Spain.
Polymer blending is an interesting strategy to broaden the combination of properties available for a variety of applications. To understand the behaviour of the new materials obtained as well as the influence of the fabrication parameters used, methods to analyse the distribution of polymers in the blend with resolution below the micrometer are required. In this work, we demonstrate the capability of focused ion beam (FIB) tomography to provide 3D information of the polymer distribution in objects obtained by blending acrylonitrile-styrene-acrylate (ASA) with polycarbonate (PC) (50 wt%), fabricated by Fused Filament Fabrication (FFF) and by Injection Moulding (IM).
View Article and Find Full Text PDFRadiother Oncol
January 2025
Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. Electronic address:
Background And Purpose: The normal tissue sparing afforded by FLASH radiotherapy is being intensely investigated for potential clinical translation. Here, we studied the effects of FLASH proton radiotherapy (F-PRT) in the reirradiation setting, with or without hypofractionation. Chronic toxicities in three murine models of normal tissue toxicity including the intestine, skin, and bone were investigated.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Stanford University, Department of Mechanical Engineering, Stanford, California 94305, USA.
The extreme electric fields created in high-intensity laser-plasma interactions could generate energetic ions far more compactly than traditional accelerators. Despite this promise, laser-plasma accelerator experiments have been limited to maximum ion energies of ∼100 MeV/nucleon. The central challenge is the low charge-to-mass ratio of ions, which has precluded one of the most successful approaches used for electrons: laser wakefield acceleration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!