Piezocatalysis driven by a gentle force possesses broad application prospects for degrading organic pollutants, sterilisation, wound healing and tissue recovery. The flexible and industrially scalable poly(vinylidene fluoride) (PVDF) film is commonly used in piezocatalysis. However, under gentle force action, PVDF composite-based piezocatalysis is poor. Herein, a flexible porous film based on poly(vinylidene fluoride)-hexafluoro propylene (PVDF-HFP) is enhanced with Fenton fillers (α-FeO nanoparticles). α-FeO nanoparticles improve the piezoelectric catalysis performance of PVDF-HFP by the β-phase enhancement and provide Fe to react with HO generated by the piezoelectric film itself, leading to an additional Fenton reaction. Meanwhile, the Fe/Fe cycle in the Fenton process accelerates under the piezoelectric field, promoting the Fenton reaction for 6.9% degradation improvement. The study on FeO/PVDF-HFP porous film with the piezo-Fenton reaction under flowing water may help promote new piezocatalysis designs with high efficiency for self-powered environmental purification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.128446 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!