Waste stabilization pond (WSP) is natural technology which can be installed in centralized or semi-centralized sewerage systems for treatment of domestic and industrial wastewater, septage and sludge, etc. WSPs are highly efficient, simple to construct, low cost and easy to operate. It can be used as secondary or tertiary treatment unit in a treatment plant either individually or in a coupling manner. The algal-bacterial symbiosis in WSP makes it completely natural treatment process for which it becomes economic as compared to other treatment technologies in terms of its maintenance cost and energy requirement. Effluent from WSP can also be used for agricultural purpose, gardening, watering road, vehicle wash, etc. Advance technologies are being integrated for better design and efficiency of WSP, but the main challenges are the separation and removal of algal species which lead to deterioration of the water if stays long. Research is necessary to maximize algal growth yield, selection of beneficial strain and optimizing harvesting methods. This review focuses on the treatment mechanism in the pond, affecting factors, types of ponds, design equation, cost analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2022.114668 | DOI Listing |
ACS Nano
January 2025
School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
Freestanding networked nanoparticle (NP) films hold substantial potential due to their high surface areas and customizable porosities. However, NPs with high surface energies and heterogeneous sizes or shapes present considerable challenges as they tend to aggregate, compromising their structural integrities. In this study, we report the scalable fabrication of ultrathin, bicontinuous, and densely packed carbon NP films via Pickering emulsion-mediated interfacial assembly.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
School of Chemical & Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China.
As a typical ecologically fragile area, the Wudong Coal Mine region in Xinjiang generates large accumulations of coal gangue each year, which, in the alkaline soil environment, can easily lead to significant leaching and accumulation of As. This study developed a stabilizer (CFD) using cement, fly ash, and desulfurized gypsum to modify in-situ soil in the Xinjiang mining area, resulting in a modified solidified soil with excellent geotechnical performance and As stabilization capability. The study results showed that when CFD content exceeded 14.
View Article and Find Full Text PDFJ Air Waste Manag Assoc
February 2025
School of Rail Transportation, Soochow University, Suzhou, People's Republic of China.
Urbanization and infrastructure projects generate huge amount of construction and demolition waste (CDW), posing significant challenges for the environment and human health. In order to reduce the environment and safety risks caused by the CDW landfills, this study was amid to utilize plant roots to develop a root-CDW-soil system for strengthening the CDW and enhancing the slope stability of CDW landfills. A series of experimental analyses were conducted, focusing on shear tests of root-soil composites under various moisture conditions and root content ratios.
View Article and Find Full Text PDFToxics
December 2024
Jinan Ecological and Environmental Monitoring Center, Jinan 250104, China.
The improper disposal of plastic products/wastes can lead to the release of nanoplastics (NPs) into environmental media, especially soil. Nevertheless, their toxicity mechanisms in soil invertebrates remain unclear. This study investigated the impact of polystyrene NPs on (, 1826) immune cells, focusing on oxidative stress, immune responses, apoptosis, and necrosis.
View Article and Find Full Text PDFToxics
December 2024
Zhejiang Zone-King Environmental Sci & Tech Co., Ltd., Hangzhou 310064, China.
Heavy metal-organic pollutants compound pollution at industrial legacy sites and have caused damage to the ecological environment and human health during recent decades. In view of the difficulty and high cost of post-contamination remediation, it is worth studying, and practically applying, cutoff walls to reduce the spread of pollution in advance. In this study, field-scale studies were carried out at e-waste dismantling legacy sites in Taizhou, Zhejiang Province of China, through the process of site investigation, numerical simulation, and cutoff wall practical application.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!