Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ghrelin is a gastric-derived peptide that stimulates feeding, blood glucose elevation, body temperature reduction, and growth hormone (GH) secretion. Liver-expressed antimicrobial peptide 2 (LEAP2) is an endogenous antagonist of the ghrelin receptor, also called growth hormone secretagogue receptor (GHSR). We studied the effects of LEAP2 administration on feeding, body weight, glycemia, body temperature, and inflammation-related genes in the liver in C57BL/6 J mice and Ghsr-knockout (Ghsr-KO) mice. We found that a single administration of LEAP2 did not abolish fasting-induced food intake in 24-h fasted C57BL/6 J mice or Ghsr-KO mice. Moreover, continuous LEAP2 administration to mice fed ad libitum for 6 days did not affect feeding, body temperature, plasma ghrelin, or blood glucose. By contrast, continuous LEAP2 administration to calorie-restricted C57BL/6 J mice and Ghsr-KO mice induced body weight loss, hypoglycemia, body temperature reduction, and upregulation of Il-6 and Il-1β mRNAs in the liver. Our findings suggest that LEAP2 functions independently of GHSR, implying that LEAP2 affects physiology beyond the ghrelin-GHSR system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.peptides.2022.170763 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!