Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Source-separated urine has been regarded as a precious treasure on account of its rich nitrogen content and is suitable for fertilizer production. In this study, a novel bioelectrical coupling with hydrophobic gas permeable tube system (BGTS) was developed to treat urine, for removing organic matter, and recover nitrogen as value-added products in the form of nitrogen fertilizer. In the presence of the electric field, the hydrolysis process of urea in the anode chamber was accelerated, and the NH driven by electric field force and concentration difference reached the cathode through the cation exchange membrane. The cathode made use of oxygen and electrons to produce alkali in situ to promote the conversion of NH to NH, which was straightforwardly absorbed in hydrophobic gas permeable tube circulating sulfuric acid solution, so as to promote the rapid migration of nitrogen and build an efficient dynamic recovery of nitrogen. After a 48-h cycle, the BGTS achieved a 95.28 ± 0.60% COD removal ratio, 91.60 ± 0.29% nitrogen recovery efficiency, and 3.48 kg m ammonium sulfate fertilizer. Economic analysis indicated a profit of 5.75 $ associated with the utilization of the BGTS system for nitrogen fertilizer recovery from source separation in urine. Consequently, this study manifested that the BGTS system can recover nitrogen from human urine in a high-recovery and cost-effective way, and is of great significance in the sustainable recovery of nitrogen resources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.153788 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!