AI Article Synopsis

  • Researchers aimed to enhance predictions for left ventricular remodeling (LVR) within three months post-myocardial infarction (MI) by utilizing machine learning techniques.
  • A study involved 443 ST-elevation MI patients at Angers University Hospital, collecting various clinical, biological, and CMR imaging data to analyze the incidence of LVR using advanced algorithms.
  • The most effective machine learning model, a neural network using seven key variables, achieved a higher accuracy (AUC of 0.78) and sensitivity (92%) compared to conventional models, highlighting the benefits of data-driven approaches in predicting LVR.

Article Abstract

Background: We sought to improve the risk prediction of 3-month left ventricular remodeling (LVR) occurrence after myocardial infarction (MI), using a machine learning approach.

Methods: Patients were included from a prospective cohort study analyzing the incidence of LVR in ST-elevation MI in 443 patients that were monitored at Angers University Hospital, France. Clinical, biological and cardiac magnetic resonance (CMR) imaging data from the first week post MI were collected, and LVR was assessed with CMR at 3 month. Data were processed with a machine learning pipeline using multiple feature selection algorithms to identify the most informative variables.

Results: We retrieved 133 clinical, biological and CMR imaging variables, from 379 patients with ST-elevation MI. A baseline logistic regression model using previously known variables achieved an AUC of 0.71 on the test set, with 67% sensitivity and 64% specificity. In comparison, our best predictive model was a neural network using seven variables (in order of importance): creatine kinase, mean corpuscular volume, baseline left atrial surface, history of diabetes, history of hypertension, red blood cell distribution width, and creatinine. This model achieved an AUC of 0.78 on the test set, reaching a sensitivity of 92% and a specificity of 55%, outperforming the baseline model.

Conclusion: These preliminary results show the value of using an unbiased data-driven machine learning approach. We reached a higher level of sensitivity compared to traditional methods for the prediction of a 3-month post-MI LVR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijcard.2022.02.009DOI Listing

Publication Analysis

Top Keywords

machine learning
16
prediction 3-month
8
clinical biological
8
cmr imaging
8
achieved auc
8
test set
8
post-infarct cardiac
4
cardiac remodeling
4
remodeling predictions
4
machine
4

Similar Publications

BMT: A Cross-Validated ThinPrep Pap Cervical Cytology Dataset for Machine Learning Model Training and Validation.

Sci Data

December 2024

Department of Pathology and Laboratory Medicine, Alpert Medical School, Brown University, Providence, RI, 02912, USA.

In the past several years, a few cervical Pap smear datasets have been published for use in clinical training. However, most publicly available datasets consist of pre-segmented single cell images, contain on-image annotations that must be manually edited out, or are prepared using the conventional Pap smear method. Multicellular liquid Pap image datasets are a more accurate reflection of current cervical screening techniques.

View Article and Find Full Text PDF

Background: High triglyceride (TG) affects and is affected of other hematological factors. The determination of serum fasted triglycerides concentrations, as part of a lipid profile, is crucial key point in hematological factors and significantly affect various systemic diseases. This study was carried out to assess the potential relation between the concentration of TG and hematological factors.

View Article and Find Full Text PDF

Generative Artificial Intelligence (AI), characterized by its ability to generate diverse forms of content including text, images, video and audio, has revolutionized many fields, including medical education. Generative AI leverages machine learning to create diverse content, enabling personalized learning, enhancing resource accessibility, and facilitating interactive case studies. This narrative review explores the integration of generative artificial intelligence (AI) into orthopedic education and training, highlighting its potential, current challenges, and future trajectory.

View Article and Find Full Text PDF

Bias in machine learning applications to address non-communicable diseases at a population-level: a scoping review.

BMC Public Health

December 2024

Upstream Lab, MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, Unity Health Toronto, 30 Bond Street, Toronto, ON, M5B 1W8, Canada.

Background: Machine learning (ML) is increasingly used in population and public health to support epidemiological studies, surveillance, and evaluation. Our objective was to conduct a scoping review to identify studies that use ML in population health, with a focus on its use in non-communicable diseases (NCDs). We also examine potential algorithmic biases in model design, training, and implementation, as well as efforts to mitigate these biases.

View Article and Find Full Text PDF

Development and Validation of a Nomogram Based on Multiparametric MRI for Predicting Lymph Node Metastasis in Endometrial Cancer: A Retrospective Cohort Study.

Acad Radiol

December 2024

Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China (Y.T., Y.W., Y.Y., X.Q., Y.H., J.L.); Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning 530021, Guangxi Zhuang Autonomous Region, PR China (J.L.). Electronic address:

Rationale And Objectives: To develop a radiomics nomogram based on clinical and magnetic resonance features to predict lymph node metastasis (LNM) in endometrial cancer (EC).

Materials And Methods: We retrospectively collected 308 patients with endometrial cancer (EC) from two centers. These patients were divided into a training set (n=155), a test set (n=67), and an external validation set (n=86).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!