Antiviral compounds modulate elasticity, strength and material fatigue of a virus capsid framework.

Biophys J

Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain. Electronic address:

Published: March 2022

This study investigates whether the biochemical and antiviral effects of organic compounds that bind different sites in the mature human immunodeficiency virus capsid may be related to the modulation of different mechanical properties of the protein lattice from which the capsid is built. Mechanical force was used as a probe to quantify, in atomic force microscopy experiments at physiological pH and ionic strength, ligand-mediated changes in capsid lattice elasticity, breathing, strength against local dislocation by mechanical stress, and resistance to material fatigue. The results indicate that the effects of the tested compounds on assembly or biochemical stability can be linked, from a physics-based perspective, to their interference with the mechanical behavior of the viral capsid framework. The antivirals CAP-1 and CAI-55 increased the intrinsic elasticity and breathing of the capsid protein lattice and may entropically decrease the probability of the capsid protein to assemble into a functionally competent conformation. Antiviral PF74 increased the resistance of the capsid protein lattice to disruption by mechanical stress and material fatigue and may enthalpically strengthen the basal capsid lattice against breakage and disintegration. This study provides proof of concept that the interrogation of the mechanical properties of the nanostructured protein material that makes a virus capsid may provide fundamental insights into the biophysical action of capsid-binding antiviral agents. The implications for drug design by specifically targeting the biomechanics of viruses are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8943814PMC
http://dx.doi.org/10.1016/j.bpj.2022.02.014DOI Listing

Publication Analysis

Top Keywords

material fatigue
12
virus capsid
12
protein lattice
12
capsid protein
12
capsid
10
capsid framework
8
mechanical properties
8
capsid lattice
8
elasticity breathing
8
mechanical stress
8

Similar Publications

Metastable state preceding shear zone instability: Implications for earthquake-accelerated landslides and dynamic triggering.

Proc Natl Acad Sci U S A

January 2025

Institut Langevin, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Université Paris Sciences & Lettres, CNRS, Paris 7587, France.

Understanding the dynamic response of granular shear zones under cyclic loading is fundamental to elucidating the mechanisms triggering earthquake-induced landslides, with implications for broader fields such as seismology and granular physics. Existing prediction methods struggle to accurately predict many experimental and in situ landslide observations due to inadequate consideration of the underlying physical mechanisms. The mechanisms that influence landslide dynamic triggering, a transition from static (or extremely slow creeping) to rapid runout, remain elusive.

View Article and Find Full Text PDF

Micro-Defects-Related Low Cycle Fatigue Mechanical Model of the Nuclear-Grade S30408 Stainless Steel.

Nanomaterials (Basel)

January 2025

Institute of Clean Energy, Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang 215400, China.

Continuous and interrupted low cycle fatigue tests were conducted on nuclear-grade S30408 stainless steel under different stress conditions at room temperature. Vickers hardness testing and microstructure characterization were performed on the fatigue samples with different fatigue states. The evolutionary mechanism of the microstructure defects in materials under fatigue cyclic loading was discussed.

View Article and Find Full Text PDF

Introduction/background: Burnout is a three-dimensional syndrome characterized by exhaustion that appears when the professional is constantly exposed to a stressful work environment, as well as depersonalization and lower personal accomplishment. Professional quality of life at work can be defined as the satisfaction degree that a person feels when being or going to their workplace.

Objective: To evaluate burnout and professional quality of life in healthcare professionals working in oncology and palliative care.

View Article and Find Full Text PDF

Finite element investigation for improving chest wall reconstruction process using ceramic and polymeric implants.

Sci Rep

January 2025

Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt.

Car accidents, infections caused by bacteria or viruses, metastatic lesions, tumors, and malignancies are the most frequent causes of chest wall damage, leading to the removal of the affected area. After excision, artificial bone or synthetic materials are used in chest wall reconstruction to restore the skeletal structure of the chest. Chest implants have traditionally been made from metallic materials like titanium alloys due to their biocompatibility and durability.

View Article and Find Full Text PDF

A styrene-glycidylmethacrylate-1-allyl-3-vinylimidazole epoxy functionalized ionomer (EFI) was synthesized, and the EFI and carbon nanotubes (CNTs) were co-introduced into poly(lactide)/poly(butylene-adipate-co-terephtalate) (PLA/PBAT) blends to fabricate high performance composites with excellent mechanical properties, fatigue-resistance and dielectric properties. It is revealed that EFI can improve the interaction force between PLA and PBAT by inducing the interfacial crosslink reaction, thereby improving the melt strength of the samples. EFI can also refine the dispersion of CNT in the composites owing to the non-covalent force between EFI and CNT, promote the formation of filler network inside composites, which is demonstrated by DMA and rheological test results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!