Background: The emergence of antimicrobial resistance (AMR) among bacterial pathogens demands a local understanding of the epidemiological situation. This information is needed both for clinical treatment decision-making purposes as well as for the revision of current care guidelines. Clinical AMR data from Namibia is sparse, whilst urinary tract infections remain not only widespread but they disproportionally affect females. This paper aims to describe the national antimicrobial resistance situation of major bacterial uropathogens in females within the 14 Namibian regions.

Method: Retrospective countrywide information on clinical urine cultures performed in females in Namibia in 2016-2017 was obtained from the national public health laboratory, Namibia Institute of Pathology (NIP). The data set included both microbiological findings as well as antimicrobial susceptibility test (AST) results. The AST was done as per the Clinical and Laboratory Standards Institute (CLSI) guidelines. Resistance to 3rd generation cephalosporins was indicative of Extended Spectrum-ß-lactamase (ESBL) production. Data analysis was done with WHONET using expert interpretation rules.

Results: In total, 22,259 urinary cultures were performed, of which 13,673 (61.4%) were culture positive. Gram-negative bacterial species accounted for 72.6% of the findings. The most common pathogens identified were Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis. Most of these were from young females, with a median age ranging from 28 to 32 years for the various pathogens. Resistance to ampicillin was 77.7% in E. coli and 84.9% in K. pneumoniae. In E. coli, resistance to 1 line empiric therapy antibiotic, nitrofurantoin, was below 13%, except for one region that showed 59.2% resistance. Resistance to third generation cephalosporin (3GC) was used as a proxy for ESBL production. By year 2017, 3GC resistance was 22%, 31.4% and 8.3% for E. coli, K. pneumoniae and P. mirabilis, respectively.

Conclusion: We report high resistance to ampicillin, quinolones and sulfamethoxazole-trimethoprim amongst E. coli. Resistance rates to third-generation cephalosporins was also concerningly high at 22%. Resistance to carbapenems was low. However, superiority of nitrofurantoin was found, which provides rational support for the usefulness of nitrofurantoin as an empiric therapy regimen for the treatment of urinary tract infections in this setting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840701PMC
http://dx.doi.org/10.1186/s13756-022-01066-2DOI Listing

Publication Analysis

Top Keywords

antimicrobial resistance
12
urinary tract
12
tract infections
12
resistance
11
females namibia
8
namibia 2016-2017
8
cultures performed
8
esbl production
8
resistance ampicillin
8
coli resistance
8

Similar Publications

Agricultural practices, specifically the use of antibiotics and other biocides, have repercussions on human, animal and plant health. The aim of this study was to evaluate the levels of Enterobacteriaceae and Enterococcus, as antibiotic resistant marker bacteria, in various matrices across the agro-ecosystem of an antibiotic-free swine farm in Quebec (Canada), namely pig feed, feces, manure, agricultural soil, water and sediment from a crossing stream, and soil from nearby forests. Samples were collected in fall 2022, spring and fall 2023 and spring 2024.

View Article and Find Full Text PDF

Isolation of Soil Microorganisms Using iChip Technology.

J Vis Exp

January 2025

Charlottetown Research and Development Center, Agriculture and Agri-Food Canada; Department of Chemistry, University of Prince Edward Island;

The iChip isolation technique uses an in-situ isolation device that increases the cultivability of previously unculturable microorganisms. Microorganisms are an important source of novel chemistries and potentially bioactive molecules. However, only 1% of environmental microorganisms can be cultured using conventional laboratory methods.

View Article and Find Full Text PDF

The rapid advancement of nanotechnology, particularly in the realm of pharmaceutical sciences, has significantly transformed the potential for treating life-threatening diseases. A pivotal aspect of this evolution is the emergence of "green nanotechnology," which emphasizes the environmentally sustainable synthesis of raw materials through biological processes. This review focuses on the biological synthesis and application of zinc oxide (ZnO) nanoparticles (NPs) from probiotic bacteria, particularly those sourced from wastewater.

View Article and Find Full Text PDF

Detection and characterization of pathogenic Bacillus haynesii from Tribulus terrestris extract: ways to reduce its levels.

Braz J Microbiol

January 2025

Innovation and Drug Discovery, Sava Healthcare Limited, Research Center, MIDC, Block D1, Plot No. 17/6, Chinchwad, Pune, 411019, India.

Plant parts such as roots, bark, leaves, flowers, and fruits that hold ethnopharmacological significance are naturally prone to microbial contamination, influenced by environmental factors like moisture and humidity. This study focuses on assessing the microbial load in the raw material of Tribulus terrestris (TT). The primary bacterium isolated from the pulverized raw material was identified as Bacillus haynesii through 16S rRNA sequencing.

View Article and Find Full Text PDF

<b>Background and Objective:</b> Cadmium (Cd) is one of the heavy metal pollutants and its accumulation impacts the sustainability of marine organisms. Current research aimed to isolate and identify the cadmium-reducing bacteria from contaminated coastal sediment in Karangsong Port, Indramayu, Indonesia. The isolates were investigated for their potential to reduce cadmium and showed the cadmium reduction drastically up to 50% at 6 hrs treated under different cadmium concentrations of 0, 5, 1 and 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!