Plastic mulch film residues have been accumulating in agricultural soils for decades, but so far, little is known about its consequences on soil microbial communities and functions. Here, we tested the effects of plastic residues of low-density polyethylene and biodegradable mulch films on soil suppressiveness and microbial community composition. We investigated how plastic residues in a Fusarium culmorum suppressive soil affect the level of disease suppressiveness, plant biomass, nutrient status, and microbial communities in rhizosphere using a controlled pot experiment. The addition of 1% plastic residues to the suppressive soil did not affect the level of suppression and the disease symptoms index. However, we did find that plant biomasses decreased, and that plant nutrient status changed in the presence of plastic residues. No significant changes in bacterial and fungal rhizosphere communities were observed. Nonetheless, bacterial and fungal communities closely attached to the plastisphere were very different from the rhizosphere communities with overrepresentation of potential plant pathogens. The plastisphere revealed a high abundance of specific bacterial phyla (Actinobacteria, Bacteroidetes, and Proteobacteria) and fungal genera (Rhizoctonia and Arthrobotrys). Our work revealed new insights and raises emerging questions for further studies on the impact of microplastics on the agroecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsec/fiac017DOI Listing

Publication Analysis

Top Keywords

plastic residues
16
microbial communities
12
plastic mulch
8
mulch film
8
film residues
8
soil suppressiveness
8
suppressiveness plant
8
suppressive soil
8
soil affect
8
affect level
8

Similar Publications

We investigated several small viral proteins that reside and function in cellular membranes. These proteins belong to the viroporin family because they assemble into ion-conducting oligomers. However, despite forming similar oligomeric structures with analogous functions, these proteins have diverse amino acid sequences.

View Article and Find Full Text PDF

Previous studies have identified three families of knotted phytochrome photoreceptors in cyanobacteria. We describe a fourth type: 'hybrid' phytochromes with putative bilin-binding cysteine residues in both their N-terminal 'knot' extensions and cGMP-phosphodiesterase/adenylate cyclase/FhlA (GAF) domains, which we designate as dual-cysteine bacteriophytochromes (DCBs). Recombinant expression of DCBs in Escherichia coli yields photoactive phycocyanobilin (PCB) adducts with red/far-red photocycles similar to those of the GAF-Cys-containing cyanobacterial phytochromes (Cph1s).

View Article and Find Full Text PDF

The structural plasticity of proteins at the molecular level is largely dictated by backbone torsion angles, which play a critical role in ligand recognition and binding. To establish the anion-induced cooperative arrangement of the main-chain (mc) torsion, herein, we analyzed a set of naturally occurring CαNN motifs as "static models" for their anion-binding competence through docking and molecular dynamics simulations and decoded its torsion angle influenced mc-driven anion recognition potential. By comparing a pool of 20 distinct sets of CαNN motif with identical sequences in their "anion bound/present, aP" and "anion free/absent, aA" versions, we could discern that there exists a positive correlation between the "difference of anion residence time (ΔR)" and "difference among the main-chain torsion angle" of the aP and aA population.

View Article and Find Full Text PDF

The combination of macroporous cryogels with synthetic peptide factors represents a promising but poorly explored strategy for the development of extracellular matrix (ECM)-mimicking scaffolds for peripheral nerve (PN) repair. In this study, IKVAV peptide was functionalized with terminal lysine residues to allow its in situ cross-linking with gelatin macromer, resulting in the formation of IKVAV-containing proteinaceous cryogels. The controllable inclusion and distribution of the peptide molecules within the scaffold was verified using a fluorescently labelled peptide counterpart.

View Article and Find Full Text PDF

Biomass valorization and bio-based material development are of major research interest following the spirit of the circular economy. Aloe vera cultivation is a widespread agricultural activity oriented toward supplement production because of its well-known antioxidant and antimicrobial properties. Aloe vera juice production also produces a large amount of biomass byproducts that are usually landfilled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!