We identified a novel flavoprotein-cytochrome c complex d-gluconate dehydrogenase (GADH) encoded by gndXYZ of Gluconobacter oxydans NBRC 3293, which is phylogenetically distinct from previously reported GADHs encoded by gndFGH and gndSLC of Gluconobacter spp. To analyze the biochemical properties of respective GADHs, Gluconobacter japonicus NBRC 3271 mutant strain lacking membranous d-gluconate dehydrogenase activity was constructed. All GADHs (GndFGH, GndSLC, and GndXYZ) were successfully overexpressed in the constructed strain. The optimal pH and KM value at that pH of GndFGH, GndSLC, and GndXYZ were 5, 6, and 4, and 8.82 ± 1.15, 22.9 ± 5.0, and 11.3 ± 1.5 m m, respectively. When the mutants overexpressing respective GADHs were cultured in d-glucose-containing medium, all of them produced 2-keto-d-gluconate, revealing that GndXYZ converts d-gluconate to 2-keto-d-gluconate as well as other GADHs. Among the recombinants, the gndXYZ-overexpressing strain accumulated the highest level of 2-keto-d-gluconate, suggesting its potential for 2-keto-d-gluconate production.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bbb/zbac024DOI Listing

Publication Analysis

Top Keywords

gndfgh gndslc
12
phylogenetically distinct
8
gluconobacter spp
8
2-keto-d-gluconate production
8
d-gluconate dehydrogenase
8
respective gadhs
8
gndslc gndxyz
8
2-keto-d-gluconate
5
gadhs
5
characterization phylogenetically
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!