The impact of different ultrasonic power on the structure and functional properties of wheat gliadin (WG) and green wheat gliadin (GG) was investigated and compared. Ultrasound had no obvious effect on subunit composition and bands of WG and GG, and there were more small molecular weight bands in GG. The results of Fourier transform-infrared spectroscopy, intrinsic fluorescence spectroscopy, and scanning electron microscopy analyses demonstrated that ultrasonic treatment had a significant effect on the structure of WG and GG, inducing the transformation from order structure to disorder structure. The dispersion and uniformity were better at 400 and 300 W, respectively. Under proper ultrasonic treatment, the particle size of WG and GG was significantly reduced, and the free sulfhydryl groups and surface hydrophobicity were significantly increased (p < 0.05). Furthermore, the functional properties of WG and GG such as solubility, emulsification properties, water holding and oil holding properties, thermal stability, and digestibility were enhanced. The better functional properties of WG and GG were obtained at 400 and 300 W, respectively. These results indicated that ultrasonic treatment with appropriate power was a valuable method for improving functional characteristics of WG and GG. PRACTICAL APPLICATION: Ultrasonic treatment could cause structural changes of wheat gliadin (WG) and green wheat gliadin (GG), and their functional properties are improved under appropriate power. This study compares the effects of ultrasound on WG and GG, and the results will provide theoretical guidance for the development of GG in the food industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1750-3841.16050 | DOI Listing |
Ultrason Sonochem
January 2025
Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan. Electronic address:
Chlorogenic acid, a well-known antioxidant, has potential applications in health care, food, and cosmetic sectors. However, its low solubility hinders its application at the industrial scale. The primary goal of the present study was to increase the lipophilic property of chlorogenic acid through esterification using an ultrasonication approach and Novozym® 435 as the catalyst.
View Article and Find Full Text PDFUltrason Sonochem
January 2025
Department of Family and Consumer Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA. Electronic address:
Ultrasound technology has been increasingly explored as an eco-friendly method to improve the microbial safety of leafy greens. However, its effect on produce quality is critical, and considerable knowledge gaps remain in this area. The present study examined the response of leafy greens to ultrasound treatment as shown by tissue damage and sensory quality, using a novel multifrequency, multimode, modulated (MMM) system to address the issue of nonuniform ultrasound field distribution.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China. Electronic address:
In this study, the improvement mechanism of yeast proteins (YPs) with the ultrasonic and pH shifting treatment on the emulsion stability was investigated through the solubility, protein structure and interface behavior of YPs. Compared with only pH shifting or ultrasound treatment, the solubility of YPs with the combined treatment of ultrasonic and pH shifting was increased significantly. The soluble protein content of pH-U400 reached 85.
View Article and Find Full Text PDFSci Rep
January 2025
Neuroscience Center, Department of Neurology, First Hospital of Jilin University, Jilin University, Changchun, China.
Large hemispheric infarction (LHI) is a severe form of stroke with high mortality and poor outcomes. Ultrasonic optic nerve sheath diameter (ONSD) is considered an effective indicator for intracranial hypertension. Our study aimed to validate the efficiency of ultrasonic ONSD and develop a nomogram to identify LHI patients who have 90-day mortality.
View Article and Find Full Text PDFSci Rep
January 2025
SINTEF, Department of Health Research and Department of Circulation and Medical Imaging, The Norwegian University of Science and Technology NTNU, 7491, Trondheim, Norway.
The transport of drugs into tumor cells near the center of the tumor is known to be severely hindered due to the high interstitial pressure and poor vascularization. The aim of this work is to investigate the possibility to induce acoustic streaming in a tumor. Two tumor cases (breast and abdomen) are simulated to find the acoustic streaming and temperature rise, while varying the focused ultrasound transducer radius, frequency, and power for a constant duty cycle (1%).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!