Neuronal repetition effect (repetition suppression and repetition enhancement) and change detection responses are fundamental brain responses that have implications in learning and cognitive development in infants and children. Studies have shown altered neuronal repetition and change detection responses in various clinical populations. However, the developmental course of these neuronal responses from infancy through childhood is still unknown. Using an electroencephalography oddball task, we investigate the developmental peculiarities of repetition effect and change detection responses in 43 children that we followed longitudinally from 3 months to 4 years of age. Analyses were conducted on theta (3-5 Hz), alpha (5-10 Hz), and beta (10-30 Hz) time-frequency windows. Results indicated that in the theta time-frequency window, in frontocentral and frontal regions of the brain, repetition and change detection responses followed a U-shaped pattern from 3 months to 4 years of age. Moreover, the change detection response was stronger in young infants compared to older children in frontocentral regions, regardless of the time-frequency window. Our findings add to the evidence of top-down modulation of perceptual systems in infants and children.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9712715 | PMC |
http://dx.doi.org/10.1093/cercor/bhac027 | DOI Listing |
Medicine (Baltimore)
January 2025
Department of Pediatric Hematology, Children's Medical Center, The First Hospital of Jilin University, Changchun, China.
Rationale: This study presents a case of hemoglobin M disease (HMD), a rare inherited disorder characterized by persistent cyanosis and hypoxemia, observed across 3 generations within a single family. The diagnosis of HMD poses significant challenges, particularly in asymptomatic individuals, due to its rarity and the subtlety of its symptoms. Notably, there is a scarcity of reports on methemoglobinemia in pediatric populations, which further complicates early detection and intervention.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
School of Business, Innovation and Sustainability, Halmstad University, Halmstad, Sweden.
Background: Recent advancements in artificial intelligence (AI) have changed the care processes in mental health, particularly in decision-making support for health care professionals and individuals with mental health problems. AI systems provide support in several domains of mental health, including early detection, diagnostics, treatment, and self-care. The use of AI systems in care flows faces several challenges in relation to decision-making support, stemming from technology, end-user, and organizational perspectives with the AI disruption of care processes.
View Article and Find Full Text PDFClin Nucl Med
January 2025
From the Department of Nuclear Medicine, University of Health Sciences, Prof. Dr. Cemil Taşcıoğlu City Hospital, Istanbul, Turkey.
Neoplastic meningitis, also known as leptomeningeal metastases, is a rare clinical entity seen in less than 1%-2% of primary nervous system tumors. Diagnosis of leptomeningeal metastases is difficult and is achieved by cytologic evidence of malignant cells in cerebrospinal fluid, or demonstration of radiologic abnormality. 18F-FDG PET/CT can detect leptomeningeal metastases before anatomical changes.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Physics (Atmospheric Physics), Wollo university, Dessie, Ethiopia.
Ethiopia's agriculture is mostly dependent on rain, though the rainfall distribution and amount are varied in spatiotemporal context. The study was conducted to analyze the distribution, trends, and variability of monthly, seasonal, and annual rainfall data over the Wollo area from 1981 to 2022. To accomplish this, the study utilized the Climate Hazards Group Infrared Precipitation with Stations version two (CHIRPS-v2) data.
View Article and Find Full Text PDFSci Adv
January 2025
PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland.
Glaciers serve as natural archives for reconstructing past changes of atmospheric aerosol concentration and composition. While most ice-core studies have focused on inorganic species, organic compounds, which can constitute up to 90% of the submicrometer aerosol mass, have been largely overlooked. To our knowledge, this study presents the first nontarget screening record of secondary organic aerosol species preserved in a Belukha ice core (Siberia, Russian Federation), ranging from the pre-industrial to the industrial period (1800-1980 CE).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!