Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
COVID-19 remains a global threat in the face of emerging SARS-CoV-2 variants and gaps in vaccine administration and availability. In this study, we analyze a data-driven COVID-19 testing program implemented at a mid-sized university, which utilized two simple, diverse, and easily interpretable machine learning models to predict which students were at elevated risk and should be tested. The program produced a positivity rate of 0.53% (95% CI 0.34-0.77%) from 20,862 tests, with 1.49% (95% CI 1.15-1.89%) of students testing positive within five days of the initial test-a significant increase from the general surveillance baseline, which produced a positivity rate of 0.37% (95% CI 0.28-0.47%) with 0.67% (95% CI 0.55-0.81%) testing positive within five days. Close contacts who were predicted by the data-driven models were tested much more quickly on average (0.94 days from reported exposure; 95% CI 0.78-1.11) than those who were manually contact traced (1.92 days; 95% CI 1.81-2.02). We further discuss how other universities, business, and organizations could adopt similar strategies to help quickly identify positive cases and reduce community transmission.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8837751 | PMC |
http://dx.doi.org/10.1038/s41746-022-00562-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!