RECK encodes a membrane-anchored protease-regulator which is often downregulated in a wide variety of cancers, and reduced RECK expression often correlates with poorer prognoses. In mouse models, forced expression of RECK in tumor xenografts results in suppression of tumor angiogenesis, invasion, and metastasis. RECK mutations, however, are rare in cancer genomes, suggesting that agents that re-activate dormant RECK may be of clinical value. We found a potent RECK-inducer, DSK638, that inhibits spontaneous lung metastasis in our mouse xenograft model. Induction of RECK expression involves SP1 sites in its promoter and may be mediated by KLF2. DSK638 also upregulates MXI1, an endogenous MYC-antagonist, and inhibition of metastasis by DSK638 is dependent on both RECK and MXI1. This study demonstrates the utility of our approach (using a simple reporter assay followed by multiple phenotypic assays) and DSK638 itself (as a reference compound) in finding potential metastasis-suppressing drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8837781PMC
http://dx.doi.org/10.1038/s41598-022-06288-3DOI Listing

Publication Analysis

Top Keywords

suppression tumor
8
reck expression
8
reck
7
metastasis
4
tumor metastasis
4
metastasis reck-activating
4
reck-activating small
4
small molecule
4
molecule reck
4
reck encodes
4

Similar Publications

To investigate the effect of icariin (ICA) on hepatocellular carcinoma (HCC) and its autophagy/apoptosis mechanism in HCC. The anti-HCC mechanism of ICA was investigated using HCC cells treated with 20 µmol/L ICA. Cell viability and proliferation were assessed using CCK-8 and colony formation assays, respectively, while TUNEL staining evaluated anti-apoptotic effects.

View Article and Find Full Text PDF

Glutamate-rich WD40 repeat containing 1 (GRWD1) is a novel oncogene/oncoprotein that downregulates the p53 tumor suppressor protein through several mechanisms. One important mechanism involves binding of GRWD1 to RPL11, which competitively inhibits the RPL11-MDM2 interaction and releases RPL11-mediated suppression of MDM2 ubiquitin ligase activity toward p53. Here, we mined the TCGA (The Cancer Genome Atlas) database to gain in-depth insight into the clinical relevance of GRWD1.

View Article and Find Full Text PDF

Background: Cancer immunotherapy has transformed metastatic cancer treatment, yet challenges persist regarding therapeutic efficacy. RECQL4, a RecQ-like helicase, plays a central role in DNA replication and repair as part of the DNA damage response, a pathway implicated in enhancing efficacy of immune checkpoint inhibitor (ICI) therapies. However, its role in patient response to ICI remains unclear.

View Article and Find Full Text PDF

Neuroinflammation and the immune response are recognized as significant mechanisms contributing to the progression and pathophysiology of Parkinson's disease (PD). Consequently, extensive research is being conducted on drugs targeting inflammation and immune response. Leflunomide, known for its anti‑inflammatory and immunomodulatory properties, is currently used as a disease‑modifying agent for the treatment of rheumatoid arthritis.

View Article and Find Full Text PDF

SMARCA4 Deficiency in Lung Cancer: From Signaling Pathway to Potential Therapeutic Targets.

Genes Chromosomes Cancer

January 2025

Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China.

SMARCA4-deficient lung cancer, including thoracic SMARCA4-deficient undifferentiated tumors and SMARCA4-deficient nonsmall-cell lung carcinomas, is a rare and aggressive disease characterized by rapid progression and poor prognosis. This cancer was identified as a distinct entity with specific morphologic and molecular features in the 2021 WHO Classification of Thoracic Tumors. Molecular alterations in SMARCA4 are specific to this type of lung cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!