Sugar nucleotide regeneration system for the synthesis of Bi- and triantennary N-glycans and exploring their activities against siglecs.

Eur J Med Chem

Department of Chemistry, National Tsing-Hua University, Hsinchu, 30013, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan. Electronic address:

Published: March 2022

Enzymatic synthesis that is commenced by the sugar nucleotide regeneration system (SNRS) protocol can minimize 1) the consumption of exorbitant sugar nucleotides, 2) the amount of transferases required, and 3) byproduct feedback inhibition. In this study, LacNAc extensions/modifications of the N-linked mannose core were carried out efficiently with SNRS with high yields and purities on all branches in a uniform manner. In addition, we demonstrate that with SNRS, bacterial glycosyltransferases exhibit a wide acceptor tolerance for bi- and triantennary mannose core structures as substrates for target oligosaccharides. The synthesized small library of mannose core-based glycans and linear O-glycans were screened for their binding affinity against h-Siglecs 2, 4, 7, 9, 14, 15, and m-Siglec-15 to explore their structure-based binding preferences. Microarray data revealed that each Siglec showed few distinct yet overlapping specificities. An increase in branching from mono to di or tri antennary did not necessarily lead to increasing affinity. Glycans with the disialoside sequence α(2,3)α(2,8)/α(2,6)α(2,8) showed high specificity and affinity for Siglec-7, and sLex α(2,3) exhibited a strong affinity for Siglec-9. Explicit recognition of α(2,6)α(2,3)- linear and α(2,3)α(2,6)-branched glycans by Siglecs-2, 4, and 15, respectively, suggests that these structures can act as potential candidates for the further development of high-affinity ligands.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2022.114146DOI Listing

Publication Analysis

Top Keywords

sugar nucleotide
8
nucleotide regeneration
8
regeneration system
8
bi- triantennary
8
mannose core
8
system synthesis
4
synthesis bi-
4
triantennary n-glycans
4
n-glycans exploring
4
exploring activities
4

Similar Publications

Objective: This study aims to investigate the associations between rs724030 A>G variant and prediabetes risk, along with their correlations with clinical features, including plasma glucose and serum insulin levels during oral glucose tolerance test (OGTT), islet function, insulin resistance, and plasma lipid levels. In particular, we investigated whether there are sex dimorphisms in the impact of this variant on islet function/insulin resistance.

Methods: We included 3415 glucose-tolerant healthy and 1744 prediabetes individuals based on OGTT.

View Article and Find Full Text PDF

Reconstruction of a microbial TNT deep degradation system and its mechanism for reshaping microecology.

J Hazard Mater

January 2025

State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China. Electronic address:

This study is the first to use synthetic biological omics technology to analyze the molecular mechanism underlying deep degradation of TNT, to construct an artificial transformation system to create engineered Escherichia coli bacteria, and to use Bacillus subtilis as an expression host to explore the mechanism driving the reshaping of the deep degradation platform on microecology. Nitroreductase family protein, 2-oxoacid:acceptor oxidoreductase, NADPH-cytochrome P450 reductase, monooxygenase, ring-cleaving dioxygenase, and RraA family protein significantly participated in the reduction-hydroxylation-ring opening cleavage of TNT, achieving deep transformation of TNT to produce pyruvic acid and other products that entered the cellular metabolic cycle. The key toxic metabolic pathways of TNT, 2,4-diamino-6-nitrotoluene, 2,4,6-triaminotoluene, and 2,4,6-trihydroxytoluene are pantothenate and CoA biosynthesis.

View Article and Find Full Text PDF

An obligately anaerobic, spore-forming sulphate-reducing bacterium, strain SB140, was isolated from a long-term continuous enrichment culture that was inoculated with peat soil from an acidic fen. Cells were immotile, slightly curved rods that stained Gram-negative. The optimum temperature for growth was 28 °C.

View Article and Find Full Text PDF

Characterization of a novel D-sorbitol dehydrogenase from Faunimonas pinastri A52C2.

Appl Microbiol Biotechnol

January 2025

Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.

The enzyme D-sorbitol dehydrogenase (SLDH) facilitates the conversion of D-sorbitol to L-sorbose. While current knowledge of this enzyme class predominantly centers on Gluconobacter oxydans, the catalytic properties of enzymes from alternative sources, particularly their substrate specificity and coenzyme dependency, remain ambiguous. In this investigation, we conducted BLASTp analysis and screened out a novel SLDH (Fpsldh) from Faunimonas pinastri A52C2.

View Article and Find Full Text PDF

Wheat breeders are constantly looking for genes and alleles that increase grain yield. One key strategy is finding new genetic resources in the wild and domesticated gene pools of related species with genes affecting grain size. This study explored a natural population of Triticum turgidum (L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!