Multimodal hyperscanning reveals that synchrony of body and mind are distinct in mother-child dyads.

Neuroimage

Department of Child and Adolescent Psychiatry, Child Neuropsychology Section, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Germany; JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging, RWTH Aachen & Research Centre Juelich, Germany; Chair II of Mathematics, Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, Germany.

Published: May 2022

Hyperscanning studies have begun to unravel the brain mechanisms underlying social interaction, indicating a functional role for interpersonal neural synchronization (INS), yet the mechanisms that drive INS are poorly understood. The current study, thus, addresses whether INS is functionally-distinct from synchrony in other systems - specifically the autonomic nervous system and motor behavior. To test this, we used concurrent functional near-infrared spectroscopy - electrocardiography recordings, while N = 34 mother-child and stranger-child dyads engaged in cooperative and competitive tasks. Only in the neural domain was a higher synchrony for mother-child compared to stranger-child dyads observed. Further, autonomic nervous system and neural synchrony were positively related during competition but not during cooperation. These results suggest that synchrony in different behavioral and biological systems may reflect distinct processes. Furthermore, they show that increased mother-child INS is unlikely to be explained solely by shared arousal and behavioral similarities, supporting recent theories that postulate that INS is higher in close relationships.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2022.118982DOI Listing

Publication Analysis

Top Keywords

autonomic nervous
8
nervous system
8
stranger-child dyads
8
synchrony
5
ins
5
multimodal hyperscanning
4
hyperscanning reveals
4
reveals synchrony
4
synchrony body
4
body mind
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!