Consciousness and its neural mechanisms remain a mystery. Current neuroscientific theories focus predominantly on the external input/stimulus and the associated stimulus-related activity during conscious contents. Despite all progress, we encounter two gaps: (i) a gap between spontaneous and stimulus-related activity; (ii) a gap between neuronal and phenomenal features. A novel, different, and unique approach, Temporo-spatial Theory of Consciousness (TTC) aims to bridge both gaps. The TTC focuses on the brain's spontaneous activity and how its spatial topography and temporal dynamic shape stimulus-related activity and resurface in the corresponding spatial and temporal features of consciousness, i.e., 'common currency'. The TTC introduces four temporo-spatial mechanisms: expansion, globalization, alignment, and nestedness. These are associated with distinct dimensions of consciousness including phenomenal content, access, form/structure, and level/state, respectively. Following up on the first introduction of the TTC in 2017, we review updates, further develop these temporo-spatial mechanisms, and postulate specific neurophenomenal hypotheses. We conclude that the TTC offers a viable approach for (i) linking spontaneous and stimulus-related activity in conscious states; (ii) determining specific neuronal and neurophenomenal mechanisms for the distinct dimensions of consciousness; (iii) an integrative and unifying framework of different neuroscientific theories of consciousness; and (iv) offers novel empirically grounded conceptual assumptions about the biological and ontological nature of consciousness and its relation to the brain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbr.2022.113788 | DOI Listing |
Hippocampus
January 2025
Laboratório de Neurobiologia Do Estresse e da Depressão, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
Serotonin (5-HT) has long been involved in response to stress and its effect may be, in part, mediated by 5-HT1a and 5-HT7 receptor subtypes in different brain structures. Both pre- and post-synaptic activation of 5-HT1a receptor, respectively, in the rat median raphe nucleus (MnRN) and hippocampus, lead to adaptation to acute inescapable stressors such as restraint and forced swim. 5-HT7 receptor (5HT7r), a stimulatory G-protein coupled receptor, has also been investigated as a possible candidate for mediating stress response.
View Article and Find Full Text PDFNeuroscience
January 2025
Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA. Electronic address:
bioRxiv
November 2024
Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
IEEE Trans Neural Syst Rehabil Eng
October 2024
J Neurosci
October 2024
Centre de Recherche Cerveau et Cognition (CerCo), UMR 5549 CNRS - Université Paul Sabatier Toulouse III, Toulouse F-31052, France
When exposed to rhythmic stimulation, the human brain displays rhythmic activity across sensory modalities and regions. Given the ubiquity of this phenomenon, how sensory rhythms are transformed into neural rhythms remains surprisingly inconclusive. An influential model posits that endogenous oscillations entrain to external rhythms, thereby encoding environmental dynamics and shaping perception.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!