Current optical see-through displays in the field of augmented reality are limited in their ability to display colors with low lightness in the hue, saturation, lightness (HSL) color space, causing such colors to appear transparent. This hardware limitation may add unintended bias into scenarios with virtual humans. Humans have varying skin tones including HSL colors with low lightness. When virtual humans are displayed with optical see-through devices, people with low lightness skin tones may be displayed semi-transparently while those with high lightness skin tones will be displayed more opaquely. For example, a Black avatar may appear semi-transparent in the same scene as a White avatar who will appear more opaque. We present an exploratory user study ( N=160) investigating whether differing opacity levels result in dehumanizing avatar and human faces. Results support that dehumanization occurs as opacity decreases. This suggests that in similar lighting, low lightness skin tones (e.g., Black faces) will be viewed as less human than high lightness skin tones (e.g., White faces). Additionally, the perceived emotionality of virtual human faces also predicts perceived humanness. Angry faces were seen overall as less human, and at lower opacity levels happy faces were seen as more human. Our results suggest that additional research is needed to understand the effects and interactions of emotionality and opacity on dehumanization. Further, we provide evidence that unintentional racial bias may be added when developing for optical see-through devices using virtual humans. We highlight the potential bias and discuss implications and directions for future research.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2022.3150521DOI Listing

Publication Analysis

Top Keywords

skin tones
24
optical see-through
16
low lightness
16
lightness skin
16
virtual humans
12
perceived humanness
8
see-through displays
8
colors low
8
see-through devices
8
high lightness
8

Similar Publications

Nanoformulated phytochemicals in skin anti-aging research: an updated mini review.

3 Biotech

January 2025

School of Engineering and Sciences, Tecnologico de Monterrey, Campus Querétaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, 76130 Querétaro, Mexico.

Skin aging is characterized by progressive loss of functionality and regenerative potential of the skin, resulting in the appearance of wrinkles, irregular pigmentation, a decrease of elasticity, dryness, and rough texture. Damage to the skin caused by oxidative stress could substantially be slowed down by the use of phytochemicals that function as natural antioxidants. Although phytochemicals have immense potential as anti-aging medicines, their effectiveness as therapeutic agents is restricted by their poor solubility, biodistribution, stability, and hydrophilicity.

View Article and Find Full Text PDF

Objective: The authors sought to compare the results in Fitzpatrick Skin Type (FST) reporting among providers, trainees, and patients. They discussed the implications of discordance in FST reporting among these groups.

Methods: This survey-based study was offered to all adult patients (18 years or older), dermatology residents, and dermatology faculty providers at University of Oklahoma Dermatology Clinic in Oklahoma City, Oklahoma.

View Article and Find Full Text PDF

Background: In humans, the presence of an even distribution of melanocytes within the epidermal basal layer allows for uniform pigmentation in healthy and young individuals. Moreover, despite high variability in skin colours and tones, interindividual melanocyte density variability is low. However, dogs display a high intraindividual pigmentary variability in different anatomical areas.

View Article and Find Full Text PDF

Skin aging, characterized by reduced elasticity, wrinkles, and changes in pigmentation, presents significant challenges in the cosmetics industry. Identifying compounds that can help mitigate these effects is crucial to developing effective anti-aging treatments and improving skin health. An advanced analytical approach for identifying skin anti-aging compounds within complex natural mixtures must be developed to achieve this.

View Article and Find Full Text PDF

Few metrics exist to describe phenotypic diversity within ophthalmic imaging datasets, with researchers often using ethnicity as a surrogate marker for biological variability. We derived a continuous, measured metric, the retinal pigment score (RPS), that quantifies the degree of pigmentation from a colour fundus photograph of the eye. RPS was validated using two large epidemiological studies with demographic and genetic data (UK Biobank and EPIC-Norfolk Study) and reproduced in a Tanzanian, an Australian, and a Chinese dataset.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!