Supersolid is a mysterious and puzzling state of matter whose possible existence has stirred a vigorous debate among physicists for over 60 years. Its elusive nature stems from the coexistence of two seemingly contradicting properties, long-range order and superfluidity. We report computational evidence of a supersolid phase of deuterium under high pressure (p>800 GPa) and low temperature (T<1.0 K). In our simulations, that are based on bosonic path integral molecular dynamics, we observe a highly concerted exchange of atoms while the system preserves its crystalline order. The exchange processes are favored by the soft core interactions between deuterium atoms that form a densely packed metallic solid. At the zero temperature limit, Bose-Einstein condensation is observed as the permutation probability of N deuterium atoms approaches 1/N with a finite superfluid fraction. Our study provides concrete evidence for the existence of a supersolid phase in high-pressure deuterium and could provide insights on the future investigation of supersolid phases in real materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.128.045301 | DOI Listing |
Phys Rev Lett
November 2024
Dipartimento di Fisica e Astronomia, Università di Firenze, I-50019 Sesto Fiorentino (FI), Italy.
The effects of frustration on extended supersolid states is a largely unexplored subject in the realm of cold-atom systems. In this work, we explore the impact of quasicrystalline lattices on the supersolid phases of dipolar bosons. Our findings reveal that weak quasicrystalline lattices can induce a variety of modulated phases, merging the inherent solid pattern with a quasiperiodic decoration induced by the external potential.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Laboratory for Solid State Physics, ETH Zürich, 8093 Zürich, Switzerland.
Magnetic, thermodynamic, neutron diffraction and inelastic neutron scattering are used to study spin correlations in the easy-axis XXZ triangular lattice magnet K_{2}Co(SeO_{3})_{2}. Despite the presence of quasi-2D "supersolid" magnetic order, the low-energy excitation spectrum contains no sharp modes and is instead a broad and structured multiparticle continuum. Applying a weak magnetic field drives the system into an m=1/3 fractional magnetization plateau phase and restores sharp spin wave modes.
View Article and Find Full Text PDFNature
November 2024
Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck, Austria.
Supersolids are states of matter that spontaneously break two continuous symmetries: translational invariance owing to the appearance of a crystal structure and phase invariance owing to phase locking of single-particle wavefunctions, responsible for superfluid phenomena. Although originally predicted to be present in solid helium, ultracold quantum gases provided a first platform to observe supersolids, with particular success coming from dipolar atoms. Phase locking in dipolar supersolids has been investigated through, for example, measurements of the phase coherence and gapless Goldstone modes, but quantized vortices, a hydrodynamic fingerprint of superfluidity, have not yet been observed.
View Article and Find Full Text PDFJ Chem Phys
July 2024
Department of Chemistry, Graduate School of Humanities and Sciences, Nara Women's University, Nara 630-8506, Japan.
We show that two liquid states can exist in distinguishable helium-4 (4He) obeying Boltzmann statistics by path integral centroid molecular dynamics (CMD) simulations. This is an indication of quantum liquid polyamorphism induced by the nuclear quantum effect. For 0.
View Article and Find Full Text PDFPhys Rev Lett
May 2024
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
We introduce density imbalanced electron-hole bilayers at a commensurate 2:1 density ratio as a platform for realizing novel phases of electrons, excitons, and trions. Through the independently tunable carrier densities and interlayer spacing, competition between kinetic energy, intralayer repulsion, and interlayer attraction yields a rich phase diagram. By a combination of theoretical analysis and numerical calculation, we find a variety of strong-coupling phases in different parameter regions, including quantum crystals of electrons, excitons, and trions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!