Comparative studies on performance of solar towers with variable scale ratios.

Environ Sci Pollut Res Int

Department of Mechanical Engineering, KPR Institute of Engineering, Tamil Nadu, Arasur, Coimbatore, 641407, India.

Published: June 2022

Improvements in the geometry of solar towers are explained in this study. Both computational and experimental studies are carried out. Three different solar towers of 1:60, 1:70, and 1:122 scale ratios are taken for the study. All the studies are carried out in an open atmosphere, where a hot wire anemometer is used to measure the peak velocity at the collector-tower junction. The collector geometry is kept flat, inclined, and semi-divergent. The tower geometry is modified from the straight tower into semi-divergent and fully divergent towers. The fully divergent tower with a semi-convergent collector achieves the highest power output among the other two models. The area convergence is the prime factor for an increase in peak velocity. The divergent tower with a semi-convergent collector achieves 54% more power output than a cylindrical tower with a flat collector.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-19079-0DOI Listing

Publication Analysis

Top Keywords

solar towers
12
scale ratios
8
studies carried
8
peak velocity
8
fully divergent
8
divergent tower
8
tower semi-convergent
8
semi-convergent collector
8
collector achieves
8
power output
8

Similar Publications

In response to the ongoing quest for more efficient renewable energy sources, this research addresses a significant gap in understanding the performance variations of Solar Chimney Power Plant (SCPP) models, particularly focusing on the influence of flow parameters in full and half-inclined collector sections featuring semi-elliptical curvature. The motivation stems from the need to optimize SCPP designs for enhanced energy generation while minimizing resource utilization and environmental impact. This research focuses on investigating flow parameter variations in Solar Chimney Power Plant (SCPP) models with full and half-inclined collector sections featuring semi-elliptical curvature and variable semi-minor heights (b: 0.

View Article and Find Full Text PDF

Contrasting responses of soil bacterial and fungal networks to photovoltaic power station.

Front Microbiol

December 2024

Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

The rapid expansion of solar photovoltaic (PV) power generation raises concerns regarding its impact on terrestrial ecosystems. Although the influence of PV panels on soil conditions and plant biomass is acknowledged, their effects on the assembly processes and co-occurrence networks of soil microbial communities remain understudied. Clarifying this influence is crucial for understanding the effects of photovoltaic panels on soil ecosystem functions.

View Article and Find Full Text PDF

Performance assessment of solar tower collector based integrated system for the cogeneration of power and cooling.

Heliyon

November 2024

Department of Electrical Engineering, College of Engineering, Majmaah University, Al-Majmaah, 11952, Saudi Arabia.

Integrating solar energy systems is an essential measure in advancing worldwide sustainability objectives and offers a sustainable, environmentally friendly approach to reducing greenhouse gas emissions and pollutants. To this direction, the proposed system integrating solar tower collector, supercritical CO, organic Rankine cycle, and single effect absorption refrigeration cycles shows potential as an efficient and sustainable solution for meeting energy and cooling demands. A detailed thermodynamic evaluation has been performed to gain valuable understanding of the energy and exergy performance, enabling the assessment of thermal and exergy efficiencies, exergy destructions, and heat losses.

View Article and Find Full Text PDF

The urgency of addressing climate change, exacerbated by greenhouse gas emissions, necessitates sustainable solutions, including green building practices and renewable energy adoption. This study focuses on the feasibility of implementing solar photovoltaic systems at Universitas Multimedia Nusantara (UMN), particularly in Building C, known as the New Media Tower, which is designed with green building principles. Solar energy, an increasingly prominent renewable source, presents a viable solution to reduce carbon footprints.

View Article and Find Full Text PDF

Solar-induced chlorophyll fluorescence (SIF) serves as a valuable proxy for photosynthesis. The TROPOspheric Monitoring Instrument (TROPOMI) aboard the Copernicus Sentinel-5P mission offers nearly global coverage with a fine spectral resolution for reliable SIF retrieval. However, the present satellite-derived SIF datasets are accessible only at coarse spatial resolutions, constraining its applications at fine scales.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!