Numerous animal models have been used to study developmental neurotoxicity associated with short-term or prolonged exposure of common general anesthetics at clinically relevant concentrations. Pediatric anesthesia models using the nonhuman primate (NHP) may more accurately reflect the human condition because of their phylogenetic similarity to humans with regard to reproduction, development, neuroanatomy, and cognition. Although they are not as widely used as other animal models, the contribution of NHP models in the study of anesthetic-induced developmental neurotoxicity has been essential. In this review, we discuss how neonatal NHP animals have been used for modeling pediatric anesthetic exposure; how NHPs have addressed key data gaps and application of the NHP model for the studies of general anesthetic-induced developmental neurotoxicity. The appropriate application and evaluation of the NHP model in the study of general anesthetic-induced developmental neurotoxicity have played a key role in enhancing the understanding and awareness of the potential neurotoxicity associated with pediatric general anesthetics.

Download full-text PDF

Source
http://dx.doi.org/10.1213/ANE.0000000000005926DOI Listing

Publication Analysis

Top Keywords

developmental neurotoxicity
16
anesthetic-induced developmental
12
nonhuman primate
8
pediatric anesthesia
8
animal models
8
models study
8
neurotoxicity associated
8
general anesthetics
8
nhp model
8
general anesthetic-induced
8

Similar Publications

Polybrominated diphenyl ethers (PBDEs) are flame retardants heavily utilized across plastic, textile and electronic industries. Although these PBDEs are effective in protecting property and human life from fire, their high production volumes have led PBDEs to become pervasive environmental contaminants and pose an ecological and health risk as high levels have been noted in environmental media including water and sediment, wildlife and human tissue. Here we investigate the developmental neurotoxicity of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), one of the more dominant PBDE congeners found in human tissue, on oligodendrocytes in the hindbrain and spinal cord.

View Article and Find Full Text PDF

Insights into Toxicological Mechanisms of Per-/polyfluoroalkyl Substances by Using Omics-centered Approaches.

Environ Pollut

January 2025

College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China. Electronic address:

The extensive presence of per-/polyfluoroalkyl substances (PFASs) in the environment and their adverse effects on organisms have garnered increasing concern. With the shift of industrial development from legacy to emerging PFASs, expanding the understanding of molecular responses to legacy and emerging PFASs is essential to accurately assess their risks to organisms. Compared with traditional toxicological approaches, omics technologies including transcriptomics, proteomics, metabolomics/lipidomics, and microbiomics allow comprehensive analysis of the molecular changes that occur in organisms after PFAS exposure.

View Article and Find Full Text PDF
Article Synopsis
  • Pyrethroid pesticides, particularly deltamethrin (DM), may contribute to neurodevelopmental disorders like ADHD and autism, but the exact mechanisms are still not fully understood.
  • The study utilized a rodent model to analyze brain-derived extracellular vesicles (BDEVs) from mice exposed to DM and identified 89 differentially expressed proteins linked to mitochondrial function and synaptic plasticity.
  • Ultimately, the research found that BDEVs from DM-exposed mice impaired long-term potentiation (LTP) in hippocampal synapses, suggesting that changes in BDEV signaling play a critical role in the neurotoxic effects of DM.
View Article and Find Full Text PDF

Integration of network toxicology and transcriptomics reveals the novel neurotoxic mechanisms of 2, 2', 4, 4'-tetrabromodiphenyl ether.

J Hazard Mater

December 2024

Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China. Electronic address:

The brominated flame retardant 2, 2', 4, 4'-tetrabromodiphenyl ether (PBDE-47) is known as a developmental neurotoxicant, yet the underlying mechanisms remain unclear. This study aims to explore its neurotoxic mechanisms by integrating network toxicology with transcriptomics based on human neural precursor cells (hNPCs) and neuron-like PC12 cells. Network toxicology revealed that PBDE-47 crosses the blood-brain barrier more effectively than heavier PBDE congeners, and is associated with disruptions in 159 biological pathways, including cytosolic DNA-sensing pathway, ferroptosis, cellular senescence, and chemokine signaling pathway.

View Article and Find Full Text PDF

Background: Severe or recurring major depression is associated with increased adverse childhood experiences (ACEs), heightened atherogenicity, and immune-linked neurotoxicity (INT). Nevertheless, the interconnections among these variables in outpatient major depression (OMDD) have yet to be determined. We aim to determine the correlations among INT, atherogenicity, and ACEs in OMDD patients compared to normal controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!