Uranium extraction is highly challenging because of low uranium concentration, high salinity, and a large number of competing ions in different environments. The template strategy is developed to address the defect of poor selectivity, but the adsorption capacity is limited by cavity blocking during the preparation of materials. Herein, a two-dimensional (2D) imprinting strategy is adopted to design 2D imprinted networks with specific nanotraps for effective uranium capture. The imprinted networks are established through the condensation polymerization of uranyl complexes, which are formed by aromatic building units coordinating with uranyl ions on the equatorial plane. Different from traditional imprinting materials that contain many invalid cavities (buried cavities or unreleased cavities), the as-prepared adsorbents possess tailored 2D nanotraps, which are open and specific to uranyl. Thus, the optimized networks not only show excellent selectivity for uranium ( = 964,500 mL/g in multi-ion solution) and slight disturbance of high salinity but also possess an ultrahigh adsorption capacity of 1365.7 mg/g. In addition, this adsorbent shows a high extraction efficiency for uranium under a wide range of pH conditions and exhibits good regeneration performance. This work proposes a pioneering strategy of 2D imprinting networks to capture uranium specifically with high capacity and can be applied to material design in many other fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c20543 | DOI Listing |
Nat Commun
January 2025
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Applying long wavelength periodic potentials on quantum materials has recently been demonstrated to be a promising pathway for engineering novel quantum phases of matter. Here, we utilize twisted bilayer boron nitride (BN) as a moiré substrate for band structure engineering. Small-angle-twisted bilayer BN is endowed with periodically arranged up and down polar domains, which imprints a periodic electrostatic potential on a target two-dimensional (2D) material placed on top.
View Article and Find Full Text PDFACS Phys Chem Au
November 2024
Department of Chemistry, University of Sheffield. Sheffield S3 7HF, U.K.
Donor-bridge-acceptor complexes (D-B-A) are important model systems for understanding of light-induced processes. Here, we apply two-color two-dimensional infrared (2D-IR) spectroscopy to D-B-A complexes with a -Pt(II) acetylide bridge (D-C≡C-Pt-C≡C-A) to uncover the mechanism of vibrational energy redistribution (IVR). Site-selective C isotopic labeling of the bridge is used to decouple the acetylide modes positioned on either side of the Pt-center.
View Article and Find Full Text PDFMikrochim Acta
October 2024
State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.
A novel molecularly imprinted electrochemical sensor (MIECS) was constructed for the specific detection of sulfadiazine (SDZ) in food. Niobium carbide (NbCTx) as a typical two-dimensional lamellar nanomaterial has good electrical conductivity and unique structure, which was assembled with one-dimensional silver nanowires (AgNWs) to form quasi-three-dimensional composite nanomaterials (NbCTx/AgNWs). As spacer material, AgNWs prevented the aggregation of NbCTx and the collapse of NbCTx layers.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Key Laboratory of Modern Agriculture Equipment and Technology, School of Agriculture Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China. Electronic address:
The development of high photoactive cathode materials combined with the formation of a stable interface are considered important factors for the selective and sensitive photoelectrochemical (PEC) detection of tetracycline (TC). Along these lines, in this work, a novel type II heterostructure composed of two-dimensional (2D) covalent organic frameworks confined to zero-dimensional (0D) carbon quantum dots (CDs/COFs) film was successfully synthesized using the rapid in-situ polymerization method at room temperature. The PEC signal of CDs/COFs was significantly amplified by improving the light absorption and electron transfer capabilities.
View Article and Find Full Text PDFNat Commun
October 2024
Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
The stacking order and twist angle provide abundant opportunities for engineering band structures of two-dimensional materials, including the formation of moiré bands, flat bands, and topologically nontrivial bands. The inversion symmetry breaking in rhombohedral-stacked transitional metal dichalcogenides endows them with an interfacial ferroelectricity associated with an out-of-plane electric polarization. By utilizing twist angle as a knob to construct rhombohedral-stacked transitional metal dichalcogenides, antiferroelectric domain networks with alternating out-of-plane polarization can be generated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!