Nanocomposite filler particles provide multiple routes to mechanically reinforce pressure-sensitive adhesives (PSAs), as their large surface area to volume ratios provide a means of effectively crosslinking multiple polymer chains. A major advancement could therefore be enabled by the design of a particle architecture that forms multiple physical and chemical interactions with the surrounding polymer matrix, while simultaneously ensuring particle dispersion and preventing particle aggregation. Understanding how such multivalent interactions between a nanoparticle crosslinking point and the PSA polymer affect material mechanical performance would provide both useful scientific knowledge on the mechanical structure-property relationships in polymer composites, as well as a new route to synthesizing useful PSA materials. Herein, we report the use of polymer-grafted nanoparticles (PGNPs) composed of poly(-butyl acrylate--acrylic acid) chains grafted to SiO nanoparticle (NP) surfaces to cohesively reinforce PSA films against shear stress without compromising their adhesive properties. The use of acrylic acid-decorated PGNPs allows for ionic crosslinking via metal salt coordination to be used in conjunction with physical entanglement, yielding 33% greater shear resistance and up to 3-fold longer holding times under static load. In addition, the effects of material parameters such as PGNP/crosslinker loading, polymer graft length, and core nanoparticle size on mechanical properties are also explored, providing insights into the use of PGNPs for the rational design of polymer composite-based PSAs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c22997 | DOI Listing |
Small
January 2025
Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
A microwave-strengthened supramolecular adhesive by introducing maleic acid amide bonds into the cross-linked networks of catechol-based monomers and iron oxide nanoparticles is reported. Under microwave irradiation, the supramolecular adhesive can be rapidly heated up, causing the transformation from maleic acid amide bonds to maleimide bonds and thus the increase of its cohesive strength. The supramolecular adhesive can flexibly bond substrates like pressure sensitive adhesives during the bonding procedure and shows an adhesion strength of 0.
View Article and Find Full Text PDFCurr Drug Deliv
January 2025
Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
Background: Hot-melt Pressure-sensitive Adhesives (HMPSA) are eco-friendly pressuresensitive adhesives, with the potential of being used as substrates for transdermal patches. However, due to the low hydrophilicity of HMPSA, the application is limited in the field of Traditional Chinese Medicine (TCM) plasters.
Methods: Three modified HMPSA were prepared with acrylic resin EPO, acrylic resin RL100, and Polyvinylpyrrolidone (PVP) as the modifying materials.
AAPS PharmSciTech
January 2025
Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410006, Hunan, China.
Acrylic pressure-sensitive adhesives (PSAs) are widely applied in transdermal drug delivery systems (TDDS). However, the molecular mechanisms underlying the effect of functional groups of PSAs on drug release and transdermal permeation properties remain insufficiently clear. In this study, we investigated the effect of acrylic PSAs' functional groups on the in vitro release and transdermal permeation properties of a model drug guanfacine (GFC).
View Article and Find Full Text PDFEur J Pharm Sci
December 2024
Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Gdansk, Hallera av. 107, Gdansk 80-402, Poland.
Adhesiveness of dermal patches can be modified in the presence of active substances. The effect is more complex when liquid components are also present in the matrix. Commercial grade pressure sensitive adhesive (PSA) polyacrylates (three types) and silicones (two types) were used to prepare adhesive matrices and liquid additives were propylene glycol, polyoxyethylene glycol, isopropyl myristate, triacetin, triethyl citrate or low viscosity silicone oil.
View Article and Find Full Text PDFChemSusChem
December 2024
Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON, Canada.
The ring-opening polymerization of bio-based monomer 2-methylene-1,3-dioxepane (MDO) can reportedly enhance polymer degradability. Butyl acrylate (BA)/MDO/vinyl acetate (VAc) terpolymers were synthesized via emulsion polymerization for their eventual application as pressure-sensitive adhesives (PSAs). While using MDO in emulsion polymerization leads to a more sustainable process, it also presents challenges such as MDO hydrolysis, MDO ring retention, and inadequate MDO distribution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!