(Sub)micrometer-scaled identification (ID) taggants enable direct identification of arbitrary goods, thereby opening up application fields based on the possibility of tracking, tracing, and anti-counterfeiting. Due to their small dimensions, these taggants can equip in principle even the smallest subcomponents or raw materials with information. To achieve the demanded applicability, the mostly used optically encoded ID taggants must be further improved. Here, micrometer-scaled supraparticles with spectrally encoded luminescent and magnetically encoded signal characteristics are reported. They are produced in a readily customizable bottom-up fabrication procedure that enables precise adjustment of luminescent and magnetic properties on multiple hierarchy levels. The incorporation of commonly used magnetic nanoparticles and fluorescent dyes, respectively, into polymer nanocomposite particles, establishes a convenient toolbox of magnetic and luminescent building blocks. The subsequent assembly of selected building blocks in the desired ratios into supraparticles grants for all the flexibility to freely adjust both signal characteristics. The obtained spectrally resolved visible luminescent and invisible magnetic ID signatures are complementary in nature, thus expanding applicability and information security compared to recently reported optical- or magnetic-encoded taggants. Additionally, the introduced ID taggant supraparticles can significantly enhance the coding capacity. Therefore, the introduced supraparticles are considered as next-generation ID taggants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202107511 | DOI Listing |
Adv Mater
January 2025
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
Van der Waals (vdWs) materials are promising candidates for hetero-integration with silicon photonics toward miniaturization and integration. VdWs materials like molybdenum telluride and black phosphorus, despite being prominent, exhibit air sensitivity, and their room temperature emissions can be significantly broadened by tens of meV. Here, a self-encapsulation strategy is developed to scalably synthesize robust 2D vdWs ErOCl with sub-meV narrow emissions at the telecom C-band.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Madhya Pradesh, 462066, India.
Adv Sci (Weinh)
January 2025
Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China.
Immunochromatographic assays (ICAs) provide simple and rapid strategies for bacterial diagnosis but still suffer from the problems of low sensitivity and high dependency on paired antibodies. Herein, the broad-spectrum capture and detection capability of the antibody-free electropositive nanoprobe are clarified for bacteria for the first time and an ultrasensitive fluorescent ICA platform is constructed for the simultaneous diagnosis of multiple pathogens. A magnetic multilayer quantum dot nanocomposite with an amino-embedded SiO shell (MagMQD@Si) is designed to enrich bacteria from solutions effectively, offer high luminescence, and reduce background signals on test strips, thus greatly improving the sensitivity and stability of ICA technique for pathogen.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N6N5, Canada.
Lanthanide-based Single-Molecule Magnets (SMMs) with optical and magnetic properties provide a means to understand intrinsic energy levels of 4f ions and their influence on optical and magnetic behaviour. Fundamental understanding of their luminescent and slow relaxation of the magnetization behaviour is critical for targeting and designing SMMs with multiple functionalities. Herein, we seek to investigate the role of Dy coordination environment and fine electronic structure on the slow magnetic relaxation and luminescence thermometry.
View Article and Find Full Text PDFDalton Trans
January 2025
State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, P. R. China.
Molecular materials that exhibit synergistic coupling between luminescence and spin-crossover (SCO) behaviors hold significant promise for applications in molecular sensors and memory devices. However, the rational design and underlying coupling mechanisms remain substantial challenges in this field. In this study, we utilized a luminescent complementary ligand pair as an intramolecular luminophore to construct a new Fe-based SCO complex, namely [FeLL](BF)·HO (1-Fe, L is a 2,2':6',2''-terpyridine (TPY) derivative ligand and L is 2,6-di-1-pyrazol-1-yl-4-pyridinecarboxylic acid), and two isomorphic analogs (2-Co, [CoLL](BF)·HO and 3-Zn, [ZnLL](BF)·HO).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!