Self-assembled colloidal crystals (CCs) or nanoparticle (NPs) superlattices have attracted significant attention due to their potential applications in many fields. However, due to the complex interactions that govern the self-assembly, it is difficult to predict and control the superstructure organization of CCs. Herein, a facile yet effective way is demonstrated to fabricate oriented CCs from capillary assembly of polymer-tethered gold NPs (AuNPs). Assembly mechanism of polymer-tethered AuNPs and their superlattice structures are systematically studied by in situ small-angle X-ray scattering (SAXS) technology. The results show that the oriented CCs of polymer-tethered AuNPs can be obtained upon solvent evaporation in a capillary tube and the oriented structure is mainly determined by the chain length of polymer ligands and size of AuNPs. Assembly of AuNPs tethered by short-chain ligand can result in oriented face-centered cubic (fcc) superlattice, whereas AuNPs tethered by long-chain ligand can assemble into an oriented body-centered tetragonal (bct) superlattice structure. Interestingly, in situ SAXS study shows that for the sample of bct superlattice structure, a transformation from fcc to bct superlattice upon solvent evaporation is observed, which strongly depends on chain length of ligands. This work provides a useful guide for polymer-tethered AuNPs to prepare orientation colloidal crystals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202106880 | DOI Listing |
Adv Mater
January 2025
College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.
The coffee-ring effect, caused by uneven deposition of colloidal particles in perovskite precursor solutions, leads to poor uniformity in perovskite films prepared through large-area printing. In this work, the surface of SnO is roughened to construct a Wenzel model, successfully achieving a super-hydrophilic interface. This modification significantly accelerates the spreading of the perovskite precursor solution, reducing the response delay time of perovskite colloidal particles during the printing process.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.
Perovskite solar cells (PSCs) can utilize the residual photons from indoor light and continuously supplement the energy supply for low-power electron devices, thereby showing the great potential for sustainable energy ecosystems. However, the solution-processed perovskites suffer from serious defect stacking within crystal lattices, compromising the low-light efficiency and operational stability. In this study, we designed a multifunctional organometallic salt named sodium sulfanilate (4-ABS), containing both electron-donating amine and sulfonic acid groups to effectively passivate the positively-charged defects, like under-coordinated Pb ions and iodine vacancies.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Physical and Colloid Chemistry, Kazan National Research Technological University, 420015 Kazan, Russia.
Microfluidics provides cutting-edge technological advancements for the in-channel manipulation and analysis of dissolved macromolecular species. The intrinsic potential of microfluidic devices to control key characteristics of polymer macromolecules such as their size distribution requires unleashing its full capacity. This work proposes a combined approach to analyzing the microscale behavior of polymer solutions and modifying their properties.
View Article and Find Full Text PDFMolecules
December 2024
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
Surface-enhanced Raman scattering (SERS) stands out as a highly effective molecular identification technique, renowned for its exceptional sensitivity, specificity, and non-destructive nature. It has become a main technology in various sectors, including biological detection and imaging, environmental monitoring, and food safety. With the development of material science and the expansion of application fields, SERS substrate materials have also undergone significant changes: from precious metals to semiconductors, from single crystals to composite particles, from rigid to flexible substrates, and from two-dimensional to three-dimensional structures.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy.
Using the framework of an investigation of the stimuli-responsive behavior of peptide assembly on a solid surface, this study on the behavior of a chemisorbed peptide on a gold surface was performed. The studied peptide is a dimeric form of the antimicrobial peptide Trichogin GAIV, which was also modified by substituting the glycine with lysine residues, while the N-terminus octanoyl group was replaced by a lipoic one that was able to bind to the gold surface. In this way, a chemically linked peptide assembly that is pH-responsive was obtained because of the protonation/deprotonation of the sidechains of the Lys residues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!