In the emerging field of intramolecular charge transfer induced counterion migration, we report the new insights into photophysical features of luminescent donor-acceptor phosphonium dyes (D-π-) A [X ] (π=-(C H ) -). The unique connectivity of the phosphorus atom affords multipolar molecules with a variable number of arms and the electronic properties of the acceptor group. In the ion-paired form, the transition from dipolar to quadrupolar configuration enhances the low energy migration-induced band by providing the additional pathways for anion motion. The multipolar architecture, adjustable lengths of the π-spacers and the nature of counterions allow for efficient tuning of the emission and achieving nearly pure white light with quantum yields around 30 %. The methyl substituent at the phosphorus atom reduces the rate of ion migration and suppresses the red shifted bands, simultaneously improving total emission intensity. The results unveil the harnessing of the multiple emission of phosphonium fluorophores by anion migration via structure and branching of donor-acceptor arms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9306779PMC
http://dx.doi.org/10.1002/anie.202115690DOI Listing

Publication Analysis

Top Keywords

multiple emission
8
emission phosphonium
8
phosphonium fluorophores
8
counterion migration
8
phosphorus atom
8
fluorophores harnessed
4
harnessed pathways
4
pathways photoinduced
4
photoinduced counterion
4
migration
4

Similar Publications

Debus-Radziszewski Reaction Inspired In Situ "One-Pot" Approach to Construct Luminescent Zirconium-Organic Frameworks.

Inorg Chem

January 2025

Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P. R. China.

Metal-organic frameworks have received extensive development in the past three decades, which are generally constructed via the reaction between inorganic building units and commercially available or presynthesized organic linkers. However, the presynthesis of organic linkers is usually time-consuming and unsustainable due to multiple-step separation and purification. Therefore, methodology development of a new strategy is fundamentally important for the construction and further exploration of the applications of MOFs.

View Article and Find Full Text PDF

Carbonyl complexes of metals with an α-diimine ligand exhibit both emission and ligand-selective photodissociation from MLCT states. Studying this photodissociative mechanism is challenging for experimental approaches due to an ultrafast femtosecond timescale and spectral overlap of multiple photoproducts. The photochemistry of a prototypical system is investigated with non-adiabatic dynamic simulations.

View Article and Find Full Text PDF

Up-to-Date Imaging for Parathyroid Tumor Localization in MEN1 Patients with Primary Hyperparathyroidism: When and Which Ones (A Narrative Pictorial Review).

Diagnostics (Basel)

December 2024

Department of Nuclear Medicine and Molecular Imaging, Institut de Cancérologie de Strasbourg Europe (ICANS), University Hospitals of Strasbourg, University of Strasbourg, 67200 Strasbourg, France.

Patients diagnosed with multiple endocrine neoplasia type-1 (MEN1) often initially present with primary hyperparathyroidism (pHPT), and typically undergo surgical intervention. While laboratory tests are fundamental for diagnosis, imaging is crucial for localizing pathological parathyroids to aid in precise surgical planning. In this pictorial review, we will begin by comprehensively examining key imaging techniques and their established protocols, evaluating their effectiveness in detecting abnormal parathyroid glands.

View Article and Find Full Text PDF

Sludge landfilling is widely used in China, accounting for approximately 65% of total sludge disposal, due to its simplicity and cost-effectiveness. However, with increasing land scarcity and stricter environmental regulations, the Chinese government has emphasized reducing sludge landfilling. Despite these efforts, sludge historically disposed of in landfills continues to pose risks, including heavy metal leaching and contamination of groundwater and soil.

View Article and Find Full Text PDF

Self-calibrating temperature sensing strategy based on KBaY(MoO):Pr phosphor luminescence characteristics with excellent relative temperature sensitivity.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

College of Science, China University of Petroleum, Beijing 102249 China; Beijing Key Lab of Oil & Gas Optical Detection Technology, China University of Petroleum, Beijing 102249 China; State Key Lab Heavy Oil Processing, China University of Petroleum, Beijing 102249 China. Electronic address:

Non-contact temperature sensors have gained immense popularity due to their inherent benefits, including the absence of physical interaction with targets and rapid response characteristics. In this work, KBaY(MoO):Pr was successfully synthesized utilizing a high-temperature solid-phase method. Experimental studies have indicated that multi-phonon relaxation (MPR), cross-relaxation (CR), and the unique intervalence charge transfer state (IVCT) exhibited by Pr-Mo contribute to the changes in luminescence properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!