Objectives: Periodontitis is closely associated with kidney disease and reactive oxygen species (ROS) involvement. Mitochondria are the primary source of both endogenous ROS and renal energy. We investigated whether resveratrol (RSV) prevents renal injury and mitochondrial dysfunction in periodontitis rats.

Methods: Thirty male Wistar rats were divided into control, experimental periodontitis (Ep) and Ep-RSV groups. To induce periodontitis, a steel ligature was placed on the cervix of the bilateral first maxillary molars. RSV (50 mg/kg/day) to the Ep-RSV group and vehicle to the Ep and control groups were gavaged. After 8 weeks, alveolar bone loss, pocket depth, gingival blood index and tooth mobility were assessed. Oxidative stress parameters, mitochondrial structure, mitochondrial membrane potential (MMP), mitochondrial ROS, adenosine triphosphate (ATP), sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) were analysed in renal. Renal function and histology were also evaluated.

Results: Compared with the control group, the Ep group showed renal structural destruction, elevated oxidative stress levels, mitochondrial structure destruction, MMP loss, mitochondrial ROS accumulation, ATP reduction, and decreased SIRT1 and PGC-1α levels. RSV prevented these destruction (p < 0.05). However, there was no significant impairment in renal function (p > 0.05).

Conclusions: Periodontitis induces mitochondrial dysfunction in renal tissues. Resveratrol exerts a preventive effect on periodontitis-induced kidney injury by preventing mitochondrial dysfunction.

Download full-text PDF

Source
http://dx.doi.org/10.1111/odi.14148DOI Listing

Publication Analysis

Top Keywords

mitochondrial dysfunction
16
mitochondrial
9
preventing mitochondrial
8
oxidative stress
8
mitochondrial structure
8
mitochondrial ros
8
renal
7
periodontitis
6
resveratrol protects
4
protects renal
4

Similar Publications

Synaptic-mitochondrial transport: mechanisms in neural adaptation and degeneration.

Mol Cell Biochem

January 2025

State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.

Synaptic plasticity is the basis for the proper functioning of the central nervous system. Synapses are the contact points between neurons and are crucial for information transmission, the structure and function of synapses change adaptively based on the different activities of neurons, thus affecting processes such as learning, memory, and neural development and repair. Synaptic activity requires a large amount of energy provided by mitochondria.

View Article and Find Full Text PDF

Metabolic reprogramming stands out as a defining characteristic of cancer, including glioblastoma (GB), enabling tumor cells to overcome growth and survival challenges in adverse conditions. The dysregulation of metabolic processes in GB is crucial to its pathogenesis, influencing both tumorigenesis and the disease's invasive tendencies. This altered metabolism supplies essential energy substrates for uncontrolled cell proliferation and also creates an immunosuppressive microenvironment, complicating conventional therapies.

View Article and Find Full Text PDF

Pesticides and plastics have brought convenience to agricultural production and daily life, but they have also led to environmental pollution through residual chemicals. Emamectin benzoate (EMB) is among the most widely used insecticides, which can cause environmental pollution and harm the health of organisms. Additionally, microplastics (MPs), a relatively new type of pollutant, not only are increasing in residual amounts within water bodies and aquatic organisms but also exacerbate pollution by adsorbing other pollutants, leading to a mixed pollution scenario.

View Article and Find Full Text PDF

Molecular Symphony of Mitophagy: Ubiquitin-Specific Protease-30 as a Maestro for Precision Management of Neurodegenerative Diseases.

CNS Neurosci Ther

January 2025

Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, USA.

Introduction: Mitochondrial dysfunction stands as a pivotal feature in neurodegenerative disorders, spurring the quest for targeted therapeutic interventions. This review examines Ubiquitin-Specific Protease 30 (USP30) as a master regulator of mitophagy with therapeutic promise in Alzheimer's disease (AD) and Parkinson's disease (PD). USP30's orchestration of mitophagy pathways, encompassing PINK1-dependent and PINK1-independent mechanisms, forms the crux of this exploration.

View Article and Find Full Text PDF

Leaky and structurally abnormal blood vessels and increased pressure in the tumor interstitium reduce the infiltration of CAR-T cells in solid tumors, including triple-negative breast cancer (TNBC). Furthermore, high burden of tumor cells may cause reduction of infiltrating CAR-T cells and their functional exhaustion. In this study, various effector-to-target (E:T) ratio experiments are established to model the treatment using CAR-T cells in leukemia (high E:T ratio) and solid tumor (low E:T ratio).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!