A theoretical perspective of the ultrafast transient absorption dynamics of CsPbBr.

J Comput Chem

Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Published: March 2022

Transient absorption spectra (TAS) of lead halide perovskites can provide important insights into the nature of the photoexcited state dynamics of this prototypical class of materials. Here, we perform ground and excited state molecular dynamics (MD) simulations within a restricted open shell Kohn-Sham (ROKS) approach in order to interpret the characteristic features of the TAS of CsPbBr . Our results reveal that properties such as the finite temperature band gap, the Stokes shift, and therefore, also the TAS are strongly size-dependent. Our TAS simulations show an early positive red-shifted feature on the fs scale that can be explained by geometric relaxation in the excited state. As excited-state processes can crucially affect the electronic properties of this class of photoactive materials, our observations are an important ingredient for further optimization of lead halide based optoelectronic devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9305422PMC
http://dx.doi.org/10.1002/jcc.26815DOI Listing

Publication Analysis

Top Keywords

transient absorption
8
lead halide
8
excited state
8
theoretical perspective
4
perspective ultrafast
4
ultrafast transient
4
absorption dynamics
4
dynamics cspbbr
4
cspbbr transient
4
absorption spectra
4

Similar Publications

Achieving efficient and sustainable hydrogen production through photocatalysis is highly promising yet remains a significant challenge, especially when replacing costly noble metals with more abundant alternatives. Conversion efficiency with noble-metal-free alternatives is frequently limited by high charge recombination rates, mainly due to the sluggish transfer and inefficient consumption of photo-generated holes. To address these challenges, a rational design of noble-metal-free cocatalysts as oxidative sites is reported to facilitate hole consumption, leading to markedly increased H yield rates without relying on expensive noble metals.

View Article and Find Full Text PDF

In-situ Growth of Metallocluster inside Heterometal-organic Cage to Switch Electron Transfer for Targeted CO2 Photoreduction.

Angew Chem Int Ed Engl

December 2024

Northeast Normal University, Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Institute of Functional Material Chemistry, Local United Engineering Lab for Power Battery, CHINA.

Construction of metal-organic cages (MOCs) with internal modifications is a promising avenue to build enzyme-like cavities and unlocking the mystery of highly catalytic activity and selectivity of enzymes. However, current interests are mainly focused on single-metal-node cages, little achievement has been expended to metalloclusters-based architectures, and the in situ endogenous generation of metal clusters. Herein, based on the hard-soft-acids-bases (HSAB), the metalloclusters-based heterometallic MOC (Cu3VMOP) constructed of [Cu3OPz3]+ and [V6O6(OCH3)9(SO4)(CO2)3]2- clusters was obtained by one-pot method.

View Article and Find Full Text PDF

The aim of the present study was to explore the role of ovarian cancer G protein-coupled receptor 1 (OGR1) in osteoclast differentiation and activity induced by extracellular acid. The impact of extracellular acidification on osteoclasts was investigated. Briefly, osteoclasts were generated from RAW 264.

View Article and Find Full Text PDF

Activated intramolecular singlet fission is known to occur in the conjugated polymer polythienylene-vinylene (P3TV). Instead, efficient intersystem crossing has been observed in a short 3-alkyl(thienylene-vinylene) dimer. Here, we investigate a series of oligomers covering the conjugation length gap between the dimer and polymer.

View Article and Find Full Text PDF

For the clarification of dynamics of photogenerated carriers in practical organic solar cell devices, we have developed a methodology to simultaneously acquire reflection-mode transient optical absorption (ΔA) and transient electric current (Δi) signals. For a typical polythiophene:fullerene bulk heterojunction solar cell device, both the ΔA and Δi signals due to the photogenerated carriers are characterized by the power-law decays of ∝t-α, which are interpreted by detrapping-limited recombination at earlier times than ∼1 μs and trap-free diffusion/drift at later times. Furthermore, we have succeeded in observing switching of the power index α for ΔA signals as well as for Δi signals; the time at which switching occurs indicates the extraction of carriers by electrodes (transit times).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!