A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparison of manual and automated digital image analysis systems for quantification of cellular protein expression. | LitMetric

Objective: Quantifying protein expression in immunohistochemically stained histological slides is an important tool for oncologic research. The use of computer-aided evaluation of IHC-stained slides significantly contributes to objectify measurements. Manual digital image analysis (mDIA) requires a user-dependent annotation of the region of interest (ROI). Others have built-in machine learning algorithms with automated digital image analysis (aDIA) and can detect the ROIs automatically. We aimed to investigate the agreement between the results obtained by aDIA and those derived from mDIA systems.

Methods: We quantified chromogenic intensity (CI) and calculated the positive index (PI) in cohorts of tissue microarrays (TMA) using mDIA and aDIA. To consider the different distributions of staining within cellular sub-compartments and different tumor architecture our study encompassed nuclear and cytoplasmatic stainings in adenocarcinomas and squamous cell carcinomas.

Results: Within all cohorts, we were able to show a high correlation between mDIA and aDIA for the CI (p<0.001) along with high agreement for the PI. Moreover, we were able to show that the cell detections of the programs were comparable as well and both proved to be reliable when compared to manual counting.

Conclusion: mDIA and aDIA show a high correlation in acquired IHC data. Both proved to be suitable to stratify patients for evaluation with clinical data. As both produce the same level of information, aDIA might be preferable as it is time-saving, can easily be reproduced, and enables regular and efficient output in large studies in a reasonable time period.

Download full-text PDF

Source
http://dx.doi.org/10.14670/HH-18-434DOI Listing

Publication Analysis

Top Keywords

digital image
12
image analysis
12
automated digital
8
protein expression
8
mdia adia
8
comparison manual
4
manual automated
4
analysis systems
4
systems quantification
4
quantification cellular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!