Aiming to design bipolar organic semiconductors with high electron mobility and efficient red thermally activated delayed fluorescence (TADF), three donor-acceptor compounds were designed and synthesized selecting 1,8-naphthalimide as an acceptor and phenoxazine, 3,7-di--butylphenothiazine or 2,7-di--butyldimethyl-9,10-dihydroacridine as donor moieties. Aggregation induced emission enhancement was detected for the compounds causing efficient TADF in the solid-state. Photoluminescence quantum yields up to 77% were observed for the films of the compounds doped in a host. The compounds exhibited small singlet-triplet splitting (0.03-0.05 eV), and high reverse intersystem crossing rates of 2.08 × 10-1.13 × 10 s. The compounds were characterized by satisfactory hole and electron-injecting properties with ionization potentials of 5.72-5.83 eV and electron affinities of 2.79-2.91 eV. Bipolar charge transport was revealed by time of flight measurements. Electron transport with low dispersity and mobilities exceeding 2 × 10 cm V s was observed at an electric field of 4.6 × 10 V cm. The compounds were used as emitters in red electroluminescent devices, which showed maximum external quantum efficiencies up to 8.2%. Utilization of host-guest systems as light-emitting materials with hosts preferably transporting holes and TADF guests which preferably transport electrons allowed maximum efficiencies to be achieved at a practical brightness of 700-2200 cd m. DFT calculations of the geometry, electronic structure, absorption and photoluminescence spectra of all compounds were carried out to prove the conclusions drawn from the experiment. The results of the calculations clearly show that the first excited state for all compounds is the intramolecular charge transfer state. Quantitative analysis of the separation degree of electronic density during excitation allows the observed dependence of the blue shift value in the absorption and emission spectra on the increasing polarity of the solvent to be explained.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cp05942dDOI Listing

Publication Analysis

Top Keywords

high electron
8
electron mobility
8
compounds
8
bipolar 18-naphthalimides
4
18-naphthalimides showing
4
showing high
4
electron
4
mobility red
4
red aie-active
4
tadf
4

Similar Publications

Microwave welding with SiCNW/PMMA nanocomposite thin films: Enhanced joint strength and performance.

Nanotechnology

January 2025

Universiti Teknologi PETRONAS, Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, MALAYSIA, Seri Iskandar, Perak, 32610, MALAYSIA.

Most previously reported susceptors for microwave welding are in powder form. In this study, a thin-film susceptor was employed due to its uniform heating rate and ease of handling. Silicon carbide nanowhisker (SiCNW) were incorporated into a poly(methyl methacrylate) (PMMA) matrix to create a nanocomposite thin film, which served as the susceptor.

View Article and Find Full Text PDF

In the fast-paced quest for early cancer detection, noninvasive screening techniques have emerged as game-changers, offering simple and accessible avenues for precession diagnostics. In line with this, our study highlights the potential of silver nanoparticle-decorated titanium carbide MXene nanosheets (TiC_AgNPs) as an electroactive interface for the noninvasive diagnosis of oral carcinoma based on the prevalence of the salivary biomarker, tumor necrosis factor-α (TNF-α). An in situ reduction was utilized to synthesize the TiC_AgNPs nanohybrid, wherein TiC acts as the reducing agent, and the resulting nanohybrid was subjected to various characterization techniques to examine the optical, structural, and morphological attributes.

View Article and Find Full Text PDF

The modified nanoparticles can significantly improve the insulation characteristics of transformer oil. Currently, there is a lack of research on the actual motion state of particles in nanofluid to further understand the micro-mechanism of nanoparticles improving the insulation characteristics of transformer oil. In this study, the nanofluid containing 0.

View Article and Find Full Text PDF

Class I major histocompatibility complex (MHC-I) proteins play a pivotal role in adaptive immunity by displaying epitopic peptides to CD8+ T cells. The chaperones tapasin and TAPBPR promote the selection of immunogenic antigens from a large pool of intracellular peptides. Interactions of chaperoned MHC-I molecules with incoming peptides are transient in nature, and as a result, the precise antigen proofreading mechanism remains elusive.

View Article and Find Full Text PDF

Fluorescent carbon quantum dots (CDs) have received widespread attention for their potential applications in optical sensing. Meanwhile, as the importance of mercury ion (Hg) detection in the environment, the exploration of Hg fluorescent nanosensor based on CDs with high quantum yield is particularly intriguing. Herein, nitrogen-doped carbon quantum dots (N-CDs) were prepared by microwave method using citric acid as carbon source and urea as nitrogen source, and glycerol as microwave solvent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!