A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interinstitutional Portability of a Deep Learning Brain MRI Lesion Segmentation Algorithm. | LitMetric

Interinstitutional Portability of a Deep Learning Brain MRI Lesion Segmentation Algorithm.

Radiol Artif Intell

Department of Radiology & Biomedical Imaging, University of California, San Francisco, 513 Parnassus Ave, Room S-261, Box 0628, San Francisco, CA 94143-0628 (A.M.R., T.J.G., P.N., D.A.W., E.C., J.B.C., L.P.S., J.D.R., C.P.H.); and Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (M.T.D., D.W.).

Published: January 2022

Purpose: To assess how well a brain MRI lesion segmentation algorithm trained at one institution performed at another institution, and to assess the effect of multi-institutional training datasets for mitigating performance loss.

Materials And Methods: In this retrospective study, a three-dimensional U-Net for brain MRI abnormality segmentation was trained on data from 293 patients from one institution (IN1) (median age, 54 years; 165 women; patients treated between 2008 and 2018) and tested on data from 51 patients from a second institution (IN2) (median age, 46 years; 27 women; patients treated between 2003 and 2019). The model was then trained on additional data from various sources: 285 multi-institution brain tumor segmentations, 198 IN2 brain tumor segmentations, and 34 IN2 lesion segmentations from various brain pathologic conditions. All trained models were tested on IN1 and external IN2 test datasets, assessing segmentation performance using Dice coefficients.

Results: The U-Net accurately segmented brain MRI lesions across various pathologic conditions. Performance was lower when tested at an external institution (median Dice score, 0.70 [IN2] vs 0.76 [IN1]). Addition of 483 training cases of a single pathologic condition, including from IN2, did not raise performance (median Dice score, 0.72; = .10). Addition of IN2 training data with heterogeneous pathologic features, representing only 10% (34 of 329) of total training data, increased performance to baseline (Dice score, 0.77; < .001). This final model produced total lesion volumes with a high correlation to the reference standard (Spearman = 0.98).

Conclusion: For brain MRI lesion segmentation, adding a modest amount of relevant training data from an external institution to a previously trained model supported successful application of the model to this external institution. Neural Networks, Brain/Brain Stem, Segmentation © RSNA, 2021.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8823451PMC
http://dx.doi.org/10.1148/ryai.2021200152DOI Listing

Publication Analysis

Top Keywords

brain mri
20
mri lesion
12
lesion segmentation
12
external institution
12
dice score
12
training data
12
brain
8
segmentation algorithm
8
median age
8
age years
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!