Endoplasmic reticulum-based -lysine acetylation serves as an important protein quality control system for the secretory pathway. Dysfunctional endoplasmic reticulum-based acetylation, as caused by overexpression of the acetyl coenzyme A transporter AT-1 in the mouse, results in altered glycoprotein flux through the secretory pathway and an autistic-like phenotype. AT-1 works in concert with SLC25A1, the citrate/malate antiporter in the mitochondria, SLC13A5, the plasma membrane sodium/citrate symporter and ATP citrate lyase, the cytosolic enzyme that converts citrate into acetyl coenzyme A. Here, we report that mice with neuron-specific overexpression of SLC13A5 exhibit autistic-like behaviours with a jumping stereotypy. The mice displayed disrupted white matter integrity and altered synaptic structure and function. Analysis of both the proteome and acetyl-proteome revealed unique adaptations in the hippocampus and cortex, highlighting a metabolic response that likely plays an important role in the SLC13A5 neuron transgenic phenotype. Overall, our results support a mechanistic link between aberrant intracellular citrate/acetyl coenzyme A flux and the development of an autistic-like phenotype.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8823335PMC
http://dx.doi.org/10.1093/braincomms/fcac002DOI Listing

Publication Analysis

Top Keywords

autistic-like phenotype
12
disrupted white
8
white matter
8
matter integrity
8
endoplasmic reticulum-based
8
secretory pathway
8
acetyl coenzyme
8
slc13a5/sodium-citrate co-transporter
4
co-transporter overexpression
4
overexpression disrupted
4

Similar Publications

Superior temporal sulcus folding, functional network connectivity, and autistic-like traits in a non-clinical population.

Mol Autism

October 2024

Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35037, Marburg, Germany.

Background: Autistic-like traits (ALT) are prevalent across the general population and might be linked to some facets of a broader autism spectrum disorder (ASD) phenotype. Recent studies suggest an association of these traits with both genetic and brain structural markers in non-autistic individuals, showing similar spatial location of findings observed in ASD and thus suggesting a potential neurobiological continuum.

Methods: In this study, we first tested an association of ALTs (assessed with the AQ questionnaire) with cortical complexity, a cortical surface marker of early neurodevelopment, and then the association with disrupted functional connectivity.

View Article and Find Full Text PDF

It is estimated that 1 in 36 children are affected by autism spectrum disorder (ASD) in the United States, which is nearly a twofold increase from a decade ago. Recent genetic studies have identified de novo loss-of-function (dnLoF) mutations in the Down Syndrome Cell Adhesion Molecule (DSCAM) as a strong risk factor for ASD. Previous research has shown that DSCAM ablation confers social interaction deficits and perseverative behaviors in mouse models.

View Article and Find Full Text PDF

Impact of KDM6B mosaic brain knockout on synaptic function and behavior.

Sci Rep

September 2024

Constantine-Paton Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.

Autism spectrum disorders (ASD) are complex neurodevelopmental conditions characterized by impairments in social communication, repetitive behaviors, and restricted interests. Epigenetic modifications serve as critical regulators of gene expression playing a crucial role in controlling brain function and behavior. Lysine (K)-specific demethylase 6B (KDM6B), a stress-inducible H3K27me3 demethylase, has emerged as one of the highest ASD risk genes, but the precise effects of KDM6B mutations on neuronal activity and behavioral function remain elusive.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is an X-linked neurodevelopmental disorder characterized by several behavioral abnormalities, including hyperactivity, anxiety, sensory hyper-responsiveness, and autistic-like symptoms such as social deficits. Despite considerable efforts, effective pharmacological treatments are still lacking, prompting the need for exploring the therapeutic value of existing drugs beyond their original approved use. One such repurposed drug is chlorzoxazone which is classified as a large-conductance calcium-dependent potassium (BKCa) channel opener.

View Article and Find Full Text PDF

De novo mutations in transcriptional regulators are emerging as key risk factors contributing to the etiology of neurodevelopmental disorders. Human genetic studies have recently identified ZMIZ1 and its de novo mutations as causal of a neurodevelopmental syndrome strongly associated with intellectual disability, autism, ADHD, microcephaly, and other developmental anomalies. However, the role of ZMIZ in brain development or how ZMIZ1 mutations cause neurological phenotypes is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!