Prostate cancer (PCa) is the most common malignancy found in men and the second leading cause of cancer-related death worldwide. Castration-resistant PCa (CRPC) is defined by PCa cells that stop responding to hormone therapy. Cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1) plays a critical role in the biosynthesis of androgens in humans. Androgen signaling cascade is a principal survival pathway for PCa cells and androgen-deprivation therapy (ADT) remains the key treatment for patients marked with locally advanced and metastatic PCa cells. Available synthetic drugs have been reported for toxicity, drug resistance, and decreasing efficacy. Thus, the design of novel selective inhibitors of CYP17A1 lyase would help circumvent associated side effects and improve pharmacological activities. Therefore, we employed structural bioinformatics techniques via molecular docking; molecular mechanics generalized born surface area (MM-GBSA), molecular dynamics (MD) simulation, and pharmacokinetic study to identify putative CYP17A1 lyase inhibitors. The results of the computational investigation showed that the compounds exhibited higher binding energy than the clinically approved abiraterone acetate. The stability of the ligand with the highest binding affinity (quercetin-3-o-rutinoside) was observed during MD simulation for 10 ns. Quercetin-3-o-rutinoside was observed to be stable within the active site of CYP17A1Lyase throughout the simulation period. The result of the pharmacokinetic study revealed that these compounds are promising therapeutic agents. Collectively, this study proposed that bioactive compounds from may be potential selective inhibitors of CYP17A1Lyase in CRPC treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8824735PMC
http://dx.doi.org/10.1093/biomethods/bpab026DOI Listing

Publication Analysis

Top Keywords

pca cells
12
prostate cancer
8
selective inhibitors
8
cyp17a1 lyase
8
pharmacokinetic study
8
quercetin-3-o-rutinoside observed
8
pca
5
structure-based discovery
4
discovery selective
4
selective cypa
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!