The Philippines is a mega-diverse country that lies at the crossroads of past human migrations in the Asia-Pacific region and is believed to have never been connected to the Asian continent, even during the major sea-level subsidence of the Quaternary. As a result, the history of pig dispersal in the Philippines remains controversial, due to limited molecular studies and absence of archaeological evidence of pig domestication. This study provides the first comprehensive analysis of 184 complete mitochondrial DNA D-loop region from Philippine pigs to elucidate their early dispersal history by performing a phylogenetic comparison with wild boars and domestic pigs worldwide. The results showed a demographic signal of the ancestry of Philippine pigs that had a close genetic relationship with those from the mainland Southeast Asia and Northeast Asia, suggesting gene flow that may have resulted from human migration and trade. Here we have suggested two possible dispersal routes. One parallels the Neolithic expansion in Island Southeast Asia and Oceania via Northeast Asia, the other from the mainland Southeast Asia, into Palawan and Sulu Archipelago as early as prehistoric times via the Sundaic Region. Despite geographic barriers to migration, numerous genetic lineages have persisted across the Philippine islands, even justifying the recognition of a Philippine Lanyu subclade. The prehistoric population history suggests a demographic expansion that coincided with the interglacial periods of the Pleistocene and may have spread from the southern regions into the eastern and central regions of the Philippines. The intriguing signal of discrepancy discovered between the ancestral pattern and distribution range of the numerous endemic Philippine wild pigs opens a challenging new approach to illuminate complexity among these animals. Our study has contributed significantly towards completing the sparse molecular studies on Philippine pigs, an essential for creating win-win conservation measures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8822243 | PMC |
http://dx.doi.org/10.3389/fgene.2021.823364 | DOI Listing |
J Vet Sci
December 2024
Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños 4031, Laguna, Philippines.
Importance: African swine fever (ASF) is a contagious transboundary swine disease that poses a significant threat to the swine industry. As an archipelago, the Philippines has a geographic advantage in reducing ASF transmission risk. However, control efforts remain challenging due to the disease's complex epidemiology, lack of effective treatment, and vaccine availability.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Center for Animal Health and Food Safety, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States.
The African swine fever (ASF) epidemic has severely challenged the Philippines' swine industry since 2019. The National African Swine Fever Prevention and Control Program (NASFPCP), launched in 2021, aims to provide guidance for managing ASF through surveillance, monitoring, and swine repopulation. This study evaluates the effectiveness of post-outbreak disinfection protocols and government-mandated measures for repopulation standard.
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
Department of Science and Technology, Virology and Vaccine Research Program, Industrial Technology Development Institute, Taguig City, Philippines.
The Nipah virus (NiV), a highly pathogenic zoonotic virus of the family, poses significant threats with its alarming mortality rates and pandemic potential. Despite historical cases, effective therapeutics remain elusive, prompting urgent exploration of potential antivirals. In this study, a structure-based virtual screening approach was employed to evaluate 690 metabolites sourced from ten medicinal plants () for their antiviral activity against Nipah virus proteins.
View Article and Find Full Text PDFPorcine Health Manag
December 2024
Animal Nutrition and Feed Science Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, 57922, Republic of Korea.
Open Vet J
September 2024
Virology and Vaccine Research and Development Program, Department of Science and Technology, Industrial Technology Development Institute, Taguig, Philippines.
Background: Porcine epidemic diarrhea virus (PEDV) is a recurring coronavirus that causes severe diarrhea in pigs with high mortality and morbidity rates, especially in neonatal pigs. Despite the availability of vaccines, their efficacy is limited owing to antigenic differences between the vaccine and field strains, which poses a challenge to infection control. Antiviral drugs targeting conserved PEDV proteins show promise for complementing vaccination strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!