Aquaculture is a critical food source for the world's growing population, producing 52% of the aquatic animal products consumed. Marine aquaculture (mariculture) generates 37.5% of this production and 97% of the world's seaweed harvest. Mariculture products may offer a climate-friendly, high-protein food source, because they often have lower greenhouse gas (GHG) emission footprints than do the equivalent products farmed on land. However, sustainable intensification of low-emissions mariculture is key to maintaining a low GHG footprint as production scales up to meet future demand. We examine the major GHG sources and carbon sinks associated with fed finfish, macroalgae and bivalve mariculture, and the factors influencing variability across sectors. We highlight knowledge gaps and provide recommendations for GHG emissions reductions and carbon storage, including accounting for interactions between mariculture operations and surrounding marine ecosystems. By linking the provision of maricultured products to GHG abatement opportunities, we can advance climate-friendly practices that generate sustainable environmental, social, and economic outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8824708PMC
http://dx.doi.org/10.1093/biosci/biab126DOI Listing

Publication Analysis

Top Keywords

marine aquaculture
8
food source
8
mariculture
5
ghg
5
climate-friendly seafood
4
seafood potential
4
potential emissions
4
emissions reduction
4
reduction carbon
4
carbon capture
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!