Quantum dots (QDs) have stood out as nanotools for glycobiology due to their photostability and ability to be combined with lectins. Mannose-binding lectin (MBL) is involved in the innate immune system and plays important roles in the activation of the complement cascade, opsonization, and elimination of apoptotic and microbial cells. Herein, adsorption and covalent coupling strategies were evaluated to conjugate QDs to a recombinant human MBL (rhMBL). The most efficient nanoprobe was selected by evaluating the conjugate ability to labelyeasts by flow cytometry. The QDs-rhMBL conjugate obtained by adsorption at pH 6.0 was the most efficient, labeling100% of cells with the highest median fluorescence intensity. The conjugation was also supported by Fourier transform infrared spectroscopy, zeta potential, and size analyses.labeling was calcium-dependent; 12% and <1% of cells were labeled in buffers without calcium and containing EDTA, respectively. The conjugate promoted specific labeling (based on cluster effect) since, after inhibition with mannan, there was a reduction of 80% in cell labeling, which did not occur with methyl--D-mannopyranoside monosaccharide. Conjugates maintained colloidal stability, bright fluorescence, and biological activity for at least 8 months. Therefore, QDs-rhMBL conjugates are promising nanotools to elucidate the roles of MBL in biological processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/2050-6120/ac4e72 | DOI Listing |
Front Immunol
January 2025
Key Lab of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Introduction: Breast cancer (BC) is the most prevalent malignant tumor in women, with triple-negative breast cancer (TNBC) showing the poorest prognosis among all subtypes. Glycosylation is increasingly recognized as a critical biomarker in the tumor microenvironment, particularly in BC. However, the glycosylation-related genes associated with TNBC have not yet been defined.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Biomedicine, Aarhus University, Aarhus, Denmark.
The innate immune system plays a critical role in the rapid recognition and elimination of pathogens through pattern recognition receptors (PRRs). Among these PRRs are the C-type lectins (CTLs) langerin, mannan-binding lectin (MBL), and surfactant protein D (SP-D), which recognize carbohydrate patterns on pathogens. Each represents proteins from different compartments of the body and employs separate effector mechanisms.
View Article and Find Full Text PDFHematol Rep
January 2025
Laboratory of Immunobiology and Immunogenetics, Post Graduation Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil.
A quarter of a century ago, sickle cell disease (SCD) was mainly viewed as a typical genetic disease inherited as a classical Mendelian trait. Therefore, the main focus concerning SCD was on diagnosis, meaning, genotyping, and identification of homozygous and heterozygous individuals carrying the relevant HbS mutant allele. Nowadays, it is well established that sickle cell disease is indeed the result of homozygosis for the HbS variant, although this single feature is not capable of explaining the highly diverse clinical presentation of SCD.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil. Electronic address:
Mannose-binding lectin (MBL) is an important glycoprotein of the human innate immune system. Furthermore, individuals with sickle cell anemia (SCA) and MBL deficiency seem more susceptible to vaso-occlusive crises, suggesting an MBL role on HbSS red blood cells (RBCs). This study investigated the interaction of MBL with HbA (healthy) and HbSS RBCs using optical tweezers (OT) and atomic force microscopy (AFM).
View Article and Find Full Text PDFToxicology
January 2025
Department of Pharmacology, Shantou University Medical College, Shantou 515041, China. Electronic address:
Aflatoxin B1 (AFB1) has been reported to synergize with hepatitis B virus (HBV) to induce development of hepatocellular carcinoma (HCC). Precise daily exposure to AFB1 and its contribution to liver injury have not been quantified and have even been disregarded due to lack of convenient detection, and the strong species specificity of HBV infection has restricted research on their synergistic harm. Hence, our objective was to investigate the molecular mechanisms by which AFB1 exacerbates HBV-related injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!