Microbes and Parkinson's disease: from associations to mechanisms.

Trends Microbiol

Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, United States. Electronic address:

Published: August 2022

Parkinson's disease (PD) is a neurodegenerative disorder influenced by both genetic and environmental factors. The mechanisms leading to neurodegeneration in PD are still under investigation, with several mechanistic models currently proposed. A number of microorganisms have been associated with increased risk of PD in humans, and recent research using newly developed models has begun to elucidate how these microbes may factor into disease development. Newly identified roles for PD-associated genes in host-microbe interactions and response to infections have also recently been uncovered, providing further evidence for microbial contributions to PD. Here we summarize these recent advances in the field and discuss them in the context of both historical and emerging hypotheses for PD development, with a particular focus on the application of rodent models as systems allowing for mechanistic hypothesis testing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tim.2022.01.004DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
8
microbes parkinson's
4
disease associations
4
associations mechanisms
4
mechanisms parkinson's
4
disease neurodegenerative
4
neurodegenerative disorder
4
disorder influenced
4
influenced genetic
4
genetic environmental
4

Similar Publications

White Matter Fiber Bundle Alterations Correlate with Gait and Cognitive Impairments in Parkinson's Disease based on HARDI Data.

Curr Med Imaging

January 2025

Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Road, Xicheng District, Beijing 100050, China.

Background: The neuroanatomical basis of white matter fiber tracts in gait impairments in individuals suffering from Parkinson's Disease (PD) is unclear.

Methods: Twenty-four individuals living with PD and 29 Healthy Controls (HCs) were included. For each participant, two-shell High Angular Resolution Diffusion Imaging (HARDI) and high-resolution 3D structural images were acquired using the 3T MRI.

View Article and Find Full Text PDF

Nuclear Alpha-Synuclein in Parkinson's Disease and the Malignant Transformation in Melanoma.

Neurol Res Int

January 2025

Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico.

Alpha-synuclein (ASyn), a marker of Parkinson's disease (PD) and other neurodegenerative processes, plays pivotal roles in neuronal nuclei and synapses. ASyn and its phosphorylated form at Serine 129 (p-ASyn) are involved in DNA protection and repair, processes altered in aging, neurodegeneration, and cancer. To analyze the localization of p-ASyn in skin biopsies of PD patients and melanoma.

View Article and Find Full Text PDF

Objectives: Despite being recognized for a long time as a characteristic of Parkinson's disease (PD), pseudobulbar affect (PBA) is still a symptom that is underdiagnosed and undertreated. This study aimed to assess the association between PBA and various mood disturbances, as well as the impact on quality of life in PD patients.

Methods: Sixty-eight patients with PD were enrolled in this study.

View Article and Find Full Text PDF

Parkinson's disease is primarily marked by mitochondrial dysfunction and metabolic abnormalities. We recently reported that the combined metabolic activators improved the immunohistochemical parameters and behavioural functions in Parkinson's disease and Alzheimer's disease animal models and the cognitive functions in Alzheimer's disease patients. These metabolic activators serve as the precursors of nicotinamide adenine dinucleotide and glutathione, and they can be used to activate mitochondrial metabolism and eventually treat mitochondrial dysfunction.

View Article and Find Full Text PDF

The largest risk factor for dementia is age. Heterochronic blood exchange studies have uncovered age-related blood factors that demonstrate 'pro-aging' or 'pro-youthful' effects on the mouse brain. The clinical relevance and combined effects of these factors for humans is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!