Comparing the minimum inhibitory and mutant prevention concentrations of selected antibiotics against animal isolates of Pasteurella multocida and Salmonella typhimurium.

Onderstepoort J Vet Res

Hans Hoheisen Research Station, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa; and, Department of Veterinary Tropical Disease, Faculty of Veterinary Science, University of Pretoria, Pretoria.

Published: January 2022

Historically, the use of antibiotics was not well regulated in veterinary medicine. The emergence of antibiotic resistance (ABR) in pathogenic bacteria in human and veterinary medicine has driven the need for greater antibiotic stewardship. The preservation of certain antibiotic classes for use exclusively in humans, especially in cases of multidrug resistance, has highlighted the need for veterinarians to reduce its use and redefine dosage regimens of antibiotics to ensure efficacy and guard against the development of ABR pathogens. The minimum inhibitory concentration (MIC), the lowest concentration of an antibiotic drug that will prevent the growth of a bacterium, is recognised as a method to assist in antibiotic dosage determination. Minimum inhibitory concentrations sometimes fail to deal with first-step mutants in bacterial populations; therefore dosing regimens based solely on MIC can lead to the development of ABR. The mutant prevention concentration (MPC) is the minimum inhibitory antibiotic concentration of the most resistant first-step mutant. Mutant prevention concentration determination as a complementary and sometimes preferable alternative to MIC determination for veterinarians when managing bacterial pathogens. The results of this study focused on livestock pathogens and antibiotics used to treat them, which had a MIC value of 0.25 µg/mL for enrofloxacin against all 27 isolates of Salmonella typhimurium. The MPC values were 0.50 µg/mL, with the exception of five isolates that had MPC values of 4.00 µg/mL. The MPC test yielded 65.52% (18 isolates) Salmonella isolates with florfenicol MICs in the sensitive range, while 11 isolates were in the resistant range. Seventeen isolates (58.62%) of Pasteurella multocida had MIC values in the susceptible range and 41.38% (12 isolates) had an intermediate MIC value. Mutant prevention concentration determinations as done in this study is effective for the antibiotic treatment of bacterial infections and minimising the development of resistance. The MPC method can be used to better control to prevent the development of antibiotic drug resistance used in animals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8831991PMC
http://dx.doi.org/10.4102/ojvr.v89i1.1955DOI Listing

Publication Analysis

Top Keywords

minimum inhibitory
16
mutant prevention
16
prevention concentration
12
isolates
8
pasteurella multocida
8
salmonella typhimurium
8
veterinary medicine
8
antibiotic
8
development abr
8
antibiotic drug
8

Similar Publications

Background: Prophylactic parenteral administration of antibiotics is strongly recommended to prevent surgical site infection (SSI). Cefoxitin is mainly administered intravenously in colorectal surgery. The current standard method for administering prophylactic antibiotics in adults is to administer a fixed dose quickly before skin incision.

View Article and Find Full Text PDF

Exploring caffeine as a disruptor of membrane integrity and genomic stability in Staphylococcus aureus: functional and in silico analysis.

Arch Microbiol

January 2025

School of Basic and Applied Sciences, Department of Biological Sciences, Dayananda Sagar University, Innovation Campus, Kudlu Gate, Hosur Rd, Bengaluru, 560 068, India.

To explore the mechanistic underpinnings of caffeine as a potent antibacterial against Staphylococcus aureus ATCC 25923 via in vitro functional assays, whole-genome sequencing, and in silico docking studies. In vitro studies established that caffeine's minimum inhibitory concentration (MIC) against S. aureus ATCC 25923 is 0.

View Article and Find Full Text PDF

The isolated Aspergillus flavus NSRN22 was used for green synthesis of silver and selenium nanoparticles (AgNPs and SeNPs). New food packaging films produced by combining each type of NPs with chitosan (CS) or sodium alginate (SA) were characterized. Transmission electron microscopy revealed that the average particle size was lower in case of AgNPs (9 to 14.

View Article and Find Full Text PDF

Background: () biofilm associated infections are prevalent and persistent, posing a serious threat to human health and causing significant economic losses in animal husbandry. Nanoemulsions demonstrate significant potential in the treatment of bacterial biofilm associated infections due to their unique physical, chemical and biological properties. In this study, a novel cinnamaldehyde nanoemulsion with the ability to penetrate biofilm structures and eliminate biofilms was developed.

View Article and Find Full Text PDF

\nKlebsiella pneumoniae is a common pathogen of healthcare-associated infections expressing a plethora of antimicrobial resistance loci, including ADP-ribosyltransferase coding genes (arr), able to mediate rifampicin resistance. The latter has activity against a broad range of microorganisms by inhibiting DNA-dependent RNA polymerases. This study aims to characterise the arr distribution and genetic context in 138 clinical isolates of K.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!